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Inference of microbial association networks
from metagenomic data




1. Background

Examples for microbial relationships
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1. Background

Co-occurrence analysis

* Jared Diamond suggested that competition between species could
be seen from their presences/absences across habitats (checkerboard
pattern)

 checkerboard-like co-occurrence patterns have been found for
micro-organisms as well (Horner-Devine et al.)
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Diamond, J. (1975) “Assembly of species communities”, pp. 342-444 in “Ecology and evolution of communities”
edited by Cody and Diamond, Harvard University Press.

Horner-Devine M.C. et al. (2007) “A Comparison Of Taxon Co-Occurrence Patterns For Macro- And Microorganisms”
Ecology 88, 1345-1353.




Community profiling with 16S sequencing

* 16S ribosomal RNA (coded by 16S rDNA genes)
is composed of hypervariable and conserved
regions

* hypervariable regions serve as markers for
taxonomic classification

 conserved regions serve as binding sites for
universal primers during DNA amplification
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primers taxonomic assignment)

~m |

~ reference
database

M Actinomycetales

M Bacillales

M Bacteroidales
Bifidobacteriales

16S sequencing workflow

M Burkholderiales
M Clostridiales
M Coriobacteriales

Cytophagales
M Desulfovibrionales

microbial
environment composition

1. Background




1. Background

Other community profiling techniques

organism counting techniques (flow
cytometry, FlowCam, ZooScan)

phylogenetic microarrays
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infant gut (Palmer HITChip (Rajilic-
et al., 2007) Stojanovic et al,,
2009)




1. Background

Reasons for co-occurrence

Why would two taxa consistently occur together or avoid each other across samples?

ecological relationships

predator/parasite (win-loss)

commensalism
(win-neutral)
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(loss-neutral)

prey/host (loss-win)

Adapted from Lidicker, W.Z. (1979) “A Clarification of
Interactions in Ecological Systems.” BioScience 29, 475-477.

niche overlap

g

3
|

Hutchinson, G.E. (1957) “Concluding remarks” Cold Spring
Harbour Symposium on Quantitative Biology 22, 415-427.




1. Background

Co-occurrence analysis in a nut shell
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1. Background

Co-occurrence analysis is a network
inference technique

samples

* network inference (reverse

A engineering): the problem of finding
B . : .
c relationships between objects

(genes, proteins, metabolites,
species...) whose presence/absence
or abundance was observed

repeatedly
* heavily used in genomics (gene

regulatory network inference)



1. Background

Microbial association network
inference

several recent metagenomic data sets measure microbial abundance
across a large number of samples

network inference techniques can identify significant relationships
between microorganisms from these data

significant co-presence (co-occurrence of two microbes across samples)
can be interpreted as niche overlap, mutualism, commensalism etc.

significant mutual exclusion (avoidance of two microbes across samples)
can be interpreted as alternative niche preference, competition,
amensalism etc.
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Network inference technique used in
metagenomics and their problems

* Which network inference techniques are
commonly used in metagenomics and which
are their problems?



2. Methods and their problems
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2. Methods and their problems

taxa and binary

Similarity-based network inference
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2. Methods and their problems

taxa and binary

Similarity-based network inference

INPUT SCORING ASSESSMENT OF
SIGNIFICANCE
presences/absences
" (incidences) repeat scoring step many
g, 123456 times with randomized data
"TB A distribution in randomized data
AL} )
Elc for each possible o - T
(@) ) 3
E D taxon pair, compute Bk
Vv ¢ > similarity score 2 -
location or time AB CD : l x
£ abundances A -
S B
I C "
£ 123 456
T4 D | i
g A [ T T T 1
e B -1.0 -0.5 0.0 0.5 1.0
'; Scores
o E symmetric calculate p-values from the
©
o similarity random score distribution
oV ¢ > . : . .
< matrix and discard relationships
+ location or time .
with p-values above a
specified threshold



2. Methods and their problems

taxa and binary

Similarity-based network inference
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2. Methods and their problems

Problems of correlation measures —
double zeros

metagenomics data are sparse, i.e. many entries are zero

when computing a correlation for a vector pair with matching
zeros, a high score may result

Example:
mmmmm
oTU2 870 823 533 696

these numbers were sampled from the uniform distribution,
with minimum set to 0 and maximum to 1000

Pearson correlation = 0.33, Spearman correlation = 0.02 (p-
value = 0.97)



Problems of correlation measures —
double zeros continued

* azerois ambiguous, since it is never clear whether a taxon is
really absent or just below detection limit

* rare taxa might co-occur in deeply sequenced samples, but
nowhere else

* we should therefore avoid giving a high similarity score to a
taxon pair on the basis of their co-absences

 Example: 5 double-zero pairs added to previous vectors

A mmmmmmmuuumn

OoTu2 264 172 529 817 576 870 823 533 696 798

* Pearson correlation = 0.76, Spearman correlation = 0.7 (p-
value = 0.004)

2. Methods and their problems




Problems of correlation measures -
compositionality

« differences in sequencing depth lead to different total read counts across
samples

 sample-wise normalization necessary (e.g. by dividing counts in a sample by
the sample count sum or by rarefaction to a common sequencing depth)

* counts are converted into proportions
’i‘ ’i‘ @ @ @ ,nl taxa with the same count number

in two samples may represent
\) different proportions

2. Methods and their problems

o Can ) Can e o




2. Methods and their problems

Problems of correlation measures -
compositionality
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 Pearson and Spearman can be severely distorted, because they
consider “absolute” values

* measures based on ratios or log-ratios (KLD, BC) are not affected by
data compositionality, since the ratio between two counts in the same
sample is not changed by the normalization

Aitchison J (1982) “The Statistical Analysis of Compositional Data.” Journal of the Royal Statistical Society Series B
(Methodological) 44, 139-177.




2. Methods and their problems
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taxa and environmental traits

2. Methods and their problems

Regression-based network inference
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2. Methods and their problems

taxa and environmental traits

Regression-based network inference
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2. Methods and their problems

taxa and environmental traits

Regression-based network inference
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2. Methods and their problems

Regression-based network inference
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2. Methods and their problems

Benefits and problems of regression

multiple regression can detect relationships between more than 2
taxa

it can predict directed edges and therefore asymmetric
relationships (such as commensalism)

— false positives are more likely with each additional source taxon
considered (triplets give many more combinations than pairs do) —
need to apply harsher multiple testing correction

— risk of over-fitting if too many source taxa are considered
— visualization is difficult (hyperedges)

= recommendation: set sparsity constraint (feature selection) such
that only a small number of source taxa is selected for each target
taxon



Network inference tools used in
metagenomics

* Which tools are out there and how do they
work?



3. Tools

Robust correlations with SparCC

e basicidea: use the variance of log ratios (a distance measure robust to

compositionality bias introduced by Aitchison)

D(x;,x ;) = var| log L
X .

J

* the variance of log-ratios is not scaled, i.e. its maximum value is unknown

a priori

e starting from the variance of log ratios, an approximation is developed to

estimate correlations robustly where w is the variance

of the log-transformed

2 2
D(xl.,xj) = a)i — a)j — 2pzja)ia)j abundance vector and p

the covariance

SparCC estimates covariance p for all taxon pairs, assuming that most pairs
are only weakly correlated

Friedman & Alm (2012) “Inferring Correlation Networks from Genomic Survey Data.” PLoS Comp Bio 8 (9), €1002687.
Aitchison (2003) “A concise guide to compositional data analysis” In: 2" Compositional Data Analysis Workshop, Girona, Italy.




3. Tools

SparCC iterations and p-values

lterations

SparCC fits a Dirichlet distribution to the observed counts and
estimates counts from this distribution

taxon proportion estimation and robust correlation computation is
iterated a number of times

final correlation is reported as the median of this distribution

P-values

counts are resampled with replacement for each OTU separately
and averaged correlation values are re-computed for these
bootstrapped counts

p-values are computed from this bootstrap distribution as the
proportion of bootstrapped correlations that are at least as large as
the original correlation value

SparCC URL

https://bitbucket.org/yonatanf/sparcc (requires basic python
skills)



3. Tools

Alternative threshold computation
with MENA

* MENA = molecular ecological network analysis pipeline
* server online: http://ieg2.ou.edu/MENA/

High throughput sequencing data or

microarray data

Standardized relative abundance (SRA)

Pair-wise similarity (e.g. Pearson
correlation) of abundance across
different samples

Network construction

3

Deng et al. (2012) “Molecular ecological network analyses” BMC Bioinformatics 13, 113.
Zhou et al. (2010) “Functional Molecular Ecological Networks.” mBio 1 (4), e0016910.




3. Tools

MENA’s RMT approach

RMT = random matrix theory

compute eigenvalue spacing
distribution of the Pearson
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3. Tools

Lagged time series with LSA

e LSA =local similarity analysis

 command line tool: http://hallam.microbiology.ubc.ca/
fastLSA/install/index.html

 command line tool: http://meta.usc.edu/softs/lsa/

* detects (local) similarity between potentially shifted
(lagged) time series

* because it considers lags, LSA returns directed edges (A is

shifted with respect to B) as well as undirected edges (A
and B are not shifted)

* popular tool in marine and lake metagenomics

Xia et al. (2013) “Efficient statistical significance approximation for local similarity analysis of high-throughput time series data”
Bioinformatics 29 (2), 230-237.

Durno et al. (2013) “Expanding the boundaries of local similarity analysis” BMC Genomics 14 (1), S3.

Xia et al. (2011) “Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.” BMC
Systems Biology 5 (2), S15.

Ruan et el. (2006) “Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental
factors” Bioinformatics 22 (20), 2532-2538.




3. Tools

LSA: pipeline
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* time series are transformed to be normally distributed

e for each pair of time series, local similarity score is computed with the dot
product using dynamic programming (allowing up to 3 gaps)

* local similarity score is divided by length of time series

e permutation is carried out to assess the significance of the local similarity score
* p-value from permutation is multiple-test corrected (Bonferroni)

* network is constructed from edges with significant similarity scores



3. Tools

LSA: example network
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Steele et al. (2011) “Marine bacterial, archaeal and protistan association networks reveal ecological linkages” ISME 5, 1414-1425.




3. Tools

Ensemble-based network inference
with CoNet

» different measures (Pearson, Spearman, Bray Curtis, ...)

capture different types of relationships, but they converge
when thresholds are increased

* jdea of ensemble: measures make different mistakes, but tend
to agree on correct result, so combine them
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Faust & Raes (2012) “Microbial interactions: from networks to models.” Nature Reviews Microbiology 10 (8), 538-550.




3. Tools

CoNet: Assessing significance

in collaboration with Fah Sathirapongsasuti and Curtis Huttenhower

e for each edge and each of the selected measures, compute permutation
and bootstrap distributions

permutation (null) distribution of method-  bootstrap distribution of method-specific
specific edge score edge score (confidence interval)

observed|score

A mean
observed score 1

Ll | Ll

Frequency
]
Frequency

N ¢

final method-specific p-value is computed as the probability of the null value
( ) under the bootstrap distribution



3. Tools

CoNet: Merging measures

multigraph (network with potentially final graph
more than 1 edge between a node pair)

Spearman
Nk /
p-value multiple-
merge testing
correction

measure-specific p-values are merged (e.g. using Fisher’s,
Brown’s or Sime’s method)

merged p-values are corrected for multiple testing (e.g. with
Benjamini-Hochberg)

* all edges with p-values above a given threshold are discarded

(by default 0.05)



3. Tools

CoNet: Dealing with compositionality
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3. Tools

CoNet: Dealing with compositionality

* Permutation test: removes correlation, but also any bias due
to compositionality
* Permutation with renormalization: shifts null distribution

raw data normalized data

spurious correlation
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3. Tools
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CoNet: Features

e http://systemsbiology.vub.ac.be/conet

runs as Cytoscape plugin or on command line e s aETe

2 Network

suitable for abundance as well as presence/absence data
supports QIIME OTU table format i}é

assigns higher-level taxa from lineages and computes
correlations between them

supports row groups o o

supports environmental metadata

integrates external network inference packages, e.g. G) o
minet (mutual information based network inference) and
apriori (association rule mining algorithm) (o (o

offers various preprocessing steps, filtering options and
missing value treatment

settings loading/saving
score distribution plots
well documented (manual, tutorials, FAQ)



3. Tools

Conclusion on metagenomic network
inference tools

e Which one to choose?

* hard to say without benchmark data — we
need a database of annotated microbial
interactions in specific environments

* on-going: in silico evaluation by a third party
(Rob Knight lab)



3. Tools

Limitation of network inference tools

* (lagged) similarity != causality

e taxa can have significant similarity scores
because they respond similarly to
environmental variables (niche sharing) or

because they interact (directly or indirectly) or
both

e even if time series are not similar, taxa might
interact (e.g. deterministic chaos)



