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Prediction of bacterial relationships in the human microbiome
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/Metagenomic sequencing projects are accumulating abundance data for microbial organisms in a wide variety of environments, including the human body. These data enable ecological\
studies of microbiota that could not be carried out previously. In macro-ecological data sets, non-random patterns of species distributions were found that reflect ecological relationships,
such as the checkerboard pattern, which indicates competition [1]. The analysis of microbial abundance data revealed similar non-random patterns for microorganisms [2].

Recently, the Human Microbiome Consortium [3] has compiled a massive data set of microbial sequences in up to 18 human body sites. Here, we present a network of microbial

\relationships built from the 16S phylotype data of the Human Microbiome Project. Y.
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To infer the final network, we merge the results of a sparse linear regression method
(GBLM) with those from an ensemble of distance and correlation measures using Fisher’s
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body sites or classes share. Thus, the body site network can be interpreted to group
body sites into different microbial habitat types, whereas the class network
highlights negative (e.g. Bacilli) and positive (e.g. Spirochaetes) hubs.
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4 We have inferred and analyzed a network of microbial relationships, where positive edges indicate niche sharing or mutualism and negative edges membership to alternative A
communities or successional stages or competition. The network is roughly organized into body areas reflecting different microbial niches and reproduces a number of known microbial
relationships in the gut, the vagina and the subgingival dental plaque. We anticipate that more detailed community structure will emerge when applying our methodology to data sets

< that allow the assignment of taxonomy down to species or even strain level. y
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