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Predicting metabolic pathways
from functionally linked genes

Karoline Faust, Didier Croes and Jacques van Helden
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Functionally linked genes

R e ——
Image sources: University of Liverpool Microarray facility, RegulonDB, Comprehensive Microbial Resources, Brilli et al. BMC Bioinformatics 2008 9:551

co-expression co-regulation of co-localization of ~ co-occurrence of
of genes in genes in operons genes in the genes across taxa
microarray and regulons genome (phylogenetic
data profiles)
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groups of associated genes
assumed to be involved in a
common function




Pathway mapping/Pathway projection

common approach to link genes to functions:
map genes to known functional units (reference
pathways)

example: map genes of operon aruCFGDB
(Pseudomonas aeruginosa PAO1)

pathway mapping tool: KEGG Mapper

| PA0895 (argD) | Pathway Search Result

Sort by th th list
| Pa0g9s (arur) |~ T

Show all objects
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| PA0O897 (aruG) | e pae00330 Arginine and proline metabolism - Pseudomonas aeruginosa PAOl (5)

e pae(0300 Lysine biosynthesis - Pseudomonas aeruginosa PAOl (1)

| PA089S (astD) |

e pae(0ll110 Biosynthesis of secondary metabolites - Pseudomonas aeruginosa PAOLl (1)

e pae(l100 Metabolic pathways - Pseudomonas aeruginosa PAOL (1)
| PA0899 (aruB) | y




Pathway mapping result

| ARGINDE AND PROLINE METABOLISM |
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1. Introduction
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Problems of pathway mapping

T Amember of the BloCyc database collection

w Search/Filter by ontology

* mapping does not deal well with
query geneS hitting mUItiple 7 i ?:iol?r:it:::i:n(;(:’i:::(aminesBiosynthesis(36)

—.[_1 Amino Acids Biosynthesis (106)

reference pathways = 5 Indvicual Ao Acds Blosnthesis (06

) Alanine Biosynthesis (4)
(] Arginine Biosynthesis (5)

[

+.[) Asparagine Biosynthesis (5)

it cannot detect organism-
specific variants of known
pathways

(] Aspartate Biosynthesis (2)
(") beta Alanine Biosynthesis (5)
1 Cysteine Biosynthesis (6)

e E e

+.) Glutamate Biosynthesis (7)
1 Glutamine Biosynthesis (4)

+ [+

+.1 Glycine Biosynthesis (5)
(] Histidine Biosynthesis (1)
) Isoleucine Biosynthesis (6)

It cannot discover novel - 5 e sy
pathways composed of known B

lysine biosynthesis |

b u i Id i n g b I OCkS lysine biosynthesis Il

lysine biosynthesis IlI

+ [+

I

=
(@)
I;
Q
-
©
@)
|
i
=
F

lysine biosynthesis |V
lysine biosynthesis V

lysine biosynthesis VI
+ .1 Methionine Biosynthesis (12)

6 lysine biosynthesis variants listed
in MetaCyc's pathway ontology




De novo discovery of metabolic pathways

A B C D

| ANTHRANSYN-RXNl |CHORISMATEMUT—RXN |

PRTRANS-RXN | PREPHENATEDEHYDRAT-RXN | | PREPHENATEDEHYDROG-RXN |

N-(5"-phosphoribosyl)-anthranilate O o

PHEAMINOTRANS-RXN TYRAMINOTRANS-RXN

PRAISOM-RXN

1-(o-carboxyphenylamino)-1"-
deoxyribulose-5'-phosphate

IGPSYN-RXN

RXNO-2382
L-tryptophan

1. Introduction

Digitized version of the Roche Applied Science "Biochemical Pathways" wall chart.



http://www.roche-applied-science.com/frames/frame_metamap.htm
http://www.roche-applied-science.com/frames/frame_metamap.htm

Network representation of metabolism

- metabolic network represented as weighted bipartite graph with two
node sets: a compound node set and a reaction node set
- nodes are connected by directed arcs

CO, NH5 - N-Succinyl-L-
N2-Succinyl-L- R04217> glutamate 5-

\ ornithine semialdehyde
R04217<

RO4189> 2-Oxoglutarate

Pl R04189<
N2-Succinyl-L-
arginine

R00832> R00832<
reaction
node

@ w O compound

node
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Metabolic pathway prediction approach

metabolic databases

FR)

Kyoto Encyclopedia of ( J &%

g e n eS ) e n Zym eS ’ K[&"&G'“"’ .\Sj?; ' A member of the Blocyga!eccollecuon
reactions, compounds

! v

metabolic network (graph)

-
\ sub-network /

extraction

_ [ 1 reaction
metabolic pathway @3 O compound

predicted node
seed node

R3

J. van Helden, D. Gilbert, L. Wernisch, M. Schroeder, S. Wodak (2001) “Application of Regulatory Sequence Analysis and Metabolic Network
Analysis to the Interpretation of Gene Expression Data.” Lecture Notes in Computer Science, Vol. 2066, 147-165




Hub compound problem in pathway prediction
glyceraldehyde-3- > 2112 2723
phosphate a4 N\ A= m-» 5.4.2.1
41.2.13 .Q.iélpg. \ /
1 glycerate-3- |
W glycerate-1,3- phosphate
bisphosphate

fructose-1,6-bisphosphate glycerate-2-phosphate
\\ 1/

~ 27111 4.2.1.11
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fructose-6-phosphate phosphoenol-pyruvate
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glucose-6-phosphate




Hub compound problem in pathway prediction
glyceraldehyde-3- > 2112 2723
phosphate = '\ A= m-» 5.4.2.1
4.1.2.13 .quﬁa* \ /
1 glycerate-3-
W glycerate-1,3- phosphate
bisphosphate

fructose-1,6-bisphosphate

e —1 : 4.2.1.11

glycerate-2-phosphate

fructose-6-phosphate . A\ Phosphoenol-pyruvate

A

5.3.1.9 U Y 7 -Gy 2.7.1.40

* DHOas o S

pyruvate

2. Methods

glucose-6-phosphate

shortcut via ADP results in biochemically invalid pathway
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Hub compound problem: Solution 1

remove hub compounds frorﬁ the network

Problem 1: Which are the hub compounds?

Problem 2: What about pathways that do contain
hub compounds (e.g. ATP biosynthesis)?

J. van Helden, L. Wernisch, D. Gilbert and S. Wodak (2002). “Graph-based analysis of metabolic networks.” Ernst Schering Res Found
Workshop, 38:245-274.
D.A. Fell and A. Wagner (2000). “The small world of metabolism.” Nature, 18:1121-1122.




2. Methods

Hub compound problem: Solution 2

fructose-1,6-
bisphosphate

- use compound structures to trace atoms

- works well to find pathways between compounds

- Problem: What about pathways between reactions (coming from
associated genes)? The atoms of which product compound should be

traced?

13:2455-2466.

M. Arita (2003). “In Silico Atomic Tracing by Substrate-Product Relationships in Escherichia coli Intermediary Metabolism.” Genome Research,




Hub compound problem: Solution 3

O compound

nub node reaction
d) @ —— seed node
(k

shortest paths algorithm)
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shortest path
> weight the network (graph) to

penalize hub compounds

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356:
222-236.




Hub compound problem: Solution 3

weighted network

(shortest path in weighted network
is the lightest path)

O compound

hub node reaction
@ —— Seed node
(k

shortest paths algorithm)
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shortest path
P weight the network (graph) to

penalize hub compounds

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356:
222-236.




Hub compound problem: Solution 3

weighted network

(shortest path in weighted network
is the lightest path)

O compound

hub node reaction
@ —— Seed node
(k

shortest paths algorithm)
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shortest path

lightest path weight the network (graph) to

penalize hub compounds

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356:
222-236.




Hub compound problem: Solution 3

weighted network

(shortest path in weighted network
is the lightest path)

O compound

hub node reaction
@ — Seed node
(k

shortest paths algorithm)
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shortest path
lightest path

another lightest path

weight the network (graph) to
penalize hub compounds

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356:
222-236.




Hub compound problem: Solution 3
penalizing hub compounds with high weight works

well In most cases

Problem: What about rare side compounds?

4-methylpentanal

pregnenolone
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electron v H2O

transfer
reduced adrenal oxidized adrenal
ferredoxin ferredoxin

rare side
compound aldosterone

biosynthesis




Hub compound problem: Solution 4
KEGG RPAIR database: splits reactions into reactant pairs

reactant pair: substrate and product of a reaction with high
structural similarity (atom mapping)

reactant pairs have a role assigned such as main, trans,
cofac, ligase and leave

cholesterol cholesterol 02 02 02

v v v v 4
RP02437 RP02438 RP00013 RP04316 RP05956
(main) (cofac) (leave)

\
H-O

pregnenolone 4-methylpentanal 4-methylpentanal  pregnenolone
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Kotera, M., Hattori, M., Oh, M.-A., Yamamoto, R., Komeno, T., Yabuzaki, J., Tonomura, K., Goto, S., and Kanehisa, M. (2004).
“RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions” Genome Informatics 15.




Which solution works best?

Pathway prediction evaluation on 55 known pathways

Graph | directed | undirected

type KEGG KEGG - .
Compound LIGAND RPAIR Conclusion: Combination of

treatment weighted network with
KEGG RPAIR annotation

unweighted 16% 59% yields highest pathway
prediction accuracy

unweighted filtered this is in agreement with
(with hub compounds work by Blum & Kohlbacher,

removed) who combined weighted
network with atom mapping
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weighted 73% 83%

geometric accuracy in %, averaged over all predicted pathways

K. Faust, D. Croes and J. van Helden (2009). "Metabolic path finding using RPAIR annotation." J. Mol. Biol. 388: 390-414.
T. Blum and O. Kohlbacher (2008). “Using atom mapping rules for an improved detection of relevant routes in weighted metabolic
networks.” Journal of Computational Biology, 15: 565-576.




Subgraph extraction algorithms: Steiner tree heuristics

- Steiner tree problem: connect seed nodes in a graph such that the
resulting subgraph (Steiner tree) has minimal weight

I

2. Methods

- tested three heuristics (iterative REA*, Klein-Ravi, Takahashi-
Matsuyama)
- principle: calculate shortest paths repetitively and merge them

* recursive enumeration algorithm

V.M. Jimenez and A. Marzal (1999). “Computing the K Shortest Paths: a New Algorithm and an Experimental Comparison.” Proc. 3rd Int. Worksh.
Algorithm Engineering, Springer Verlag.

P. Klein and R. Ravi (1995). “A nearly best-possible approximation algorithm for node-weighted steiner trees.” Journal of Algorithms, 19:104-115.
H. Takahashi and A. Matsuyama (1980). “An approximate solution for the Steiner problem in graphs.” Math. Japonica 24: 573-577.
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Subgraph extraction algorithms: k\Walks

- idea: some edges and nodes in
a network are more relevant than
others to connect given seed
nodes

- edge or node relevance:
proportional to the expected
number of times it is visited by
, each starting
from one of the seed nodes

- add edges and their adjacent
nodes in the order of their
relevance to the seed nodes until
seed nodes are connected or no
more edges can be added

J. Callut (2007). “First Passage Times Dynamics in Markov Models with Applications to

HMM Induction, Sequence Classification, and Graph Mining.” PhD thesis, Université catholique de Louvain.

P. Dupont, J. Callut, G. Dooms, J.-N. Monette and Y. Deville (2006-2007). “Relevant subgraph extraction from
random walks in a graph.” Research Report UCL/FSA/INGI RR 2006-07.




Subgraph extraction algorithms: Hybrid algorithms

- kWalks can be combined with Steiner tree heuristic

= = phenylalanine
seed nodes
\ B tryptophan

input nétwork [ kWalks J
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Subgraph extraction algorithms: Hybrid algorithms

- kWalks can be combined with Steiner tree heuristic

phenylalanine
seed nodes

B tryptophan

: optional: edge
relevances as new
¥ edge weights

input network
of reduced size
(fewer nodes)

S

N Acety-L phenyllanine > <>




Subgraph extraction algorithms: Hybrid algorithms

- kWalks can be combined with Steiner tree heuristic

phenylalanine
seed nodes
B tryptophan

: optional: edge
relevances as new
¥ edge weights

input network
of reduced size
(fewer nodes)
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RPO1711 RP00623 RP06548

( Prephenate ( Chorismate ) @ ( L-Tyrosine ) ( L-Tryptophan ) L-Phenylalanine

Steiner tree > RPO1721 RP01056
heuristic predicted pathway




Example: Pseudomonas aeruginosa operon
)

b waes\ Pseudomonas
4 g% aeruginosa

Network

Properties:

- generic RPAIR network

| PA0895 (argD) | - undirected, weighted

- 30,655 nodes (12,287

I PA0896 (aruF) I reactant pairs, 6,081
compounds)

| PA0897 (aruG) | - 49,148 edges

- compound nodes weighted
according to their degree

Image source: Wikimedia Commons

aruCFGDB operon

3. Example

| PA089S (astD) |

| PA0899 (aruB) |

N <V

~map genes to reactions C kWalks-Takahashi-Matsuyama hybricD
and reactant pairs




Example: Pseudomonas aeruginosa operon

Extracted pathway

RP03849 RP04653
R04217 R05049

/ (2.6.1.81) \ (1.2.1.71 [PAOBQS])

N2-Succinyl-L-ormithine N2-Succinyl-L-arginine N-Succinyl-L-glutamate 5-semialdehyde N-Succinyl-L-glutamate
(C03415) (C03296) (C05932) (C05931)

] \ '

RP03821 RP01130 RP00882 RP02447
R04180 R00332 R00411 R02734
(3.5.3.23 [PA0899]) (2.3.1.109 [PA0897;PA0896]) (3.5.1.96 [PA0901]) (3.5.1.18 [PA1162])

| . S—

o —-_;\ Succinate < N-Succinyl-LL-2 6-diaminoheptanedioate
o)

/"’ R
g FEOABUIR (C00042) (C04421)

S I

reactant pair

RP04114

O compound RO4475
(2.6.1.17 [PA0895;PA0530])

seed reactant pair

main com poun d linked to _'____ N-Succinyl-l-L-amjno-6-0x0heptanedioate_

seed reactant pair — -
no match to any KEGG map

Arginine and proline metabolism

Lysine biosynthesis




Example: Pseudomonas aeruginosa operon

Extracted pathway

N2-Succinyl-L-ormithine N2-Succinyl-L-arginine
(C03415) (C03296)

]

RP03849
R04217
(2.6.1.81)

RP03821 RP01130
R04180 R00332
(3.5.3.23 [PA0899]) (2.3.1.109 [PA0897;PA0896])

|

(" L-Arginine )
il

reactant pair

O compound

seed reactant pair

main compound linked to
seed reactant pair

no match to any KEGG map
Arginine and proline metabolism

Lysine biosynthesis

- no P. aeruginosa gene linked
to EC number 2.6.1.81 in KEGG

RP04653
R05049
(1.2.1.71 [PA0898])

N-Succinyl-L-glutamate 5-semialdehyde N-Succinyl-L-glutamate
(C05932) (C05931)

RP00882 RP02447
R00411 R02734
(3.5.1.96 [PA0901]) (3.5.1.18 [PA1162])

Succinate N-Succinyl-LL-2,6-diaminoheptanedioate
(C00042) (C04421)

I

- intermediate reactant pair
associated to a P pesi,
aeruginosa gene (2.6.1.17 [PA0895:PA0530])

N-Succinyl-2-L-amino-6-oxoheptanedioate



Example: Pseudomonas aeruginosa operon

L-arginine

succinyl-CofA~-_ -
\,| arginine

1 succinyltransferase (Pa):
Pa-aruG Pa-aruF

AST (arginine succinyl — eezmeassl 55
transferase) pathway in R

MN™-succinyl-L-arginine

MetaCyc 2HO~ |

CO,
2 ammonia

omithine A-succinyitransferase

e - in contrast to KEGG, EC
N®-succinyl-L-omithine number 2.6.1.81 is linked
to a P. aeruginosa gene

2-oxoglutarate—._ succinylomithine
N transaminase (Pa): Pa-aruC
26181

Q
o
£
©
X
n
3

L-glutam ate-a—"

Nz—succinyI—L—qut-amate S-semialdehyde
F
H,0

NAD™ T

+ /
2H .~
NADH

Prediction: P. aeruginosa should be
able to degrade arginine and possibly
to grow on arginine as sole carbon
source

2 i
N™-succinylglutamate

AT A
succinate L-glutamate




Strengths and weaknesses of pathway prediction

Strengths

* Prediction approach can be applied
to any network and handles large
networks (having thousands of
nodes).

* Prediction approach only requires the
network and seed nodes as input.

¥ Seed nodes can be compounds or
reactions/reactant pairs (EC numbers
and genes).

¥ Seed node sets can be treated.

¥ Weights can be tuned to favor certain
reactions/compounds (e.g. organism-
specific reactions or reactions with
high scores in a high-throughput
experiment).

Weaknesses

Difficulty to predict pathways
containing cycles or spirals
(fatty acid biosynthesis).

Difficulty to predict pathways
In highly inter-connected
central metabolic network

(glycolysis).

Difficulty to link enzymes/EC
numbers to reactions.
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Treatment of reaction directionality

- two ways to treat reaction directionality:

- represent the reaction direction as
annotated in the source database

- consider that all the reactions can
occur in both directions

- free energy AG depends on temperature
T as well as on the product and substrate
concentration ratio and the standard free
energy AG’

- these parameters are known for only a
few reactions - directed metabolic graph
therefore contains direct and reverse
direction for each reaction

enzymes don’t alter the equilibrium of substrate and
product concentrations, instead they speed up
attainment of equilibria:

J

AG’

uncat

gy, (

Free enel

Reaction coordinate

AG = AG"+RT In([product]...[productm]/[educt]...[eductn])

image source: http://www.biology.buffalo.edu/courses/bio401/
KiongHo/Lecture32.pdf



http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
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Graph representation of metabolic data

graphs with only one node set:

Why bipartite? RI ‘ A
- to avoid a compound or a reaction

to be represented in the metabolic

graph multiple times R

reaction Rl is represented compound A is represented by
by several edges several edges

Why directed? undirected graphs:
- to avoid paths going from

substrate to substrate (or from
product to product) of the same P
reaction

Why are direct and reverse
reaction direction mutually
exclusive?

- to avoid crossing the same
reaction twice

J. van Helden, L. Wernisch, D. Gilbert, S. Wodak, “Graph-based analysis of metabolic networks”, Ernst Schering Research Foundation
Workshop, Springer-Verlag 38 (2002), 245-274.




Hub compound problem: Main and side compounds

prephenate 4-hydroxyphenylpyruvate

PREPHENATE
DEHYDROG-
RXN
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main compounds: carbon atom transfer

side compounds: donors/acceptors of energy,
electrons or functional groups

but: distinction not always clear (e.g. glutamate)
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main changes
on substrate
(main)

glutamine

D

C00064

RP00024

!

cooo

glutamate

RPAIR classes

functional groups
transferred by
transferases (trans)

L-valine

= OO

C00183

RP06488, ’

¢

C00041

L-alanine

pyruvate

cofactor pairs in

reactions involving oxido-

reductases (cofac)
NAD+

Coo0o3

RP00002

= Yo

N
%, O Po—g—o—f-oﬂ~
S Z OH OH e J

HO OH HO  “OH
Co0o04

NADH
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RPAIR classes

release or addition
consumption of nucleoside of inorganic
triphosphates by ligases (ligase) compounds

(leave)
ATP glutamine

o o o o 7L N
I I TR N 2 O
HO-P-0-P-0-P-0" ( )~ \2\\(
| | l / N
HO HO HO s 7 N @
cooooz

! !

RP00003 RP05752

!

C00014

ammonia



Accuracy of pathway prediction

annotated pathway nodes

false negatives
(FN)

true positives (TP)

false positives (FP)

inferred pathway nodes
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sensitivity Sn: TP/(TP + FN)
positive predictive value PPV: TP/(TP + FP)

arithmetic accuracy: (Sn + PPV)/2

geometric accuracy: V(Sn-PPV)




Multiple-end pathway prediction evaluation results

- evaluation carried out on 71 yeast-specific reference
pathways in MetaCyc network (£:MeTACYC

Algorithm kWalks Takahashi/ kWalks/Takahashi-
(kwfr::(esewnh Matsuyama (itl\e/lgtsi\lgaRrEi\)

. . . ) (iterative REA) .

Weight policy iterations) hybrid

unweighted 62% (64%) | 53% (43%) - (55%)

28
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weighted 60% (68%) | 76% (68%) 77% (68%)

geometric accuracy in %, averaged over all predicted pathways

K. Faust, P. Dupont, J. Callut, and J. van Helden (2010). “Pathway discovery in metabolic networks by subgraph
extraction.” Bioinformatics 26, 1211-1218.




Seed reaction grouping problem

Genes

Enzym esS (" alcohol ) (imidazoleglycerol- h

dehydrogenase phosphate dehydratase
(broad-specificity and histidinol-
enzyme) phosphatase (bifunctional

/
\enzyme) y

\_

L2
‘N

*

4
*

EC numbers 42.1.19

Reactions R00623 || R00754
R02124 || R04805
.}(18)

S eed g ro u pS .““““"“I““--ll-.llll.l........‘~’..
_ R00623
(EC grouping)

R02124 | R00754 |;

R03457

R03457 | { | RO3013

.
3
*
-
K 18
. .
-
.
e
.
Yee, .s®
RRLT T T T L L



Example: Pseudomonas aeruginosa operon

Gene to reactant pair mapping

- N:N relationship between genes, EC numbers, reactions and reactant pairs
- seed reactant pairs can be grouped gene-wise, EC number-wise or reaction-wise

Provided Name in Description of identifier Associated EC s:t:e::/aused for Group of seed Identifier
identifier KEGG P numbers P Y P type

prediction

succinylarginine dihydrolase
(EC:3.5.3.23)

succinylglutamic
PA0898 PA0898 [semialdehyde 1.2.1.71 [RP04653] PA0898_group4

PA0899  |PA0899 3.5.3.23 [RP03821] PAO899_group5 [~

- 2 genes associated
to the same EC
number (2 different

dehydrogenase —
arginine/ornithine / RPO sub-units of the same
PA0897 PA0897 [succinyltransferase AIl 2.3.1.109 F00035] PA0897_group3 enzyme)

subunit

X
O
=
0
o
o
<

arginine/ornithine
PA0896 PA0896 [succinyltransferase Al
subunit

[RPO1130,

RP00035] PAD896_group2 (Gene

[RP02102,
PA0895 PA0895 |bifunctional RP04114, PA0895_groupl |[Gene
EP00014]

Seed enzymes come from: pae (KEGG organism abbreviation) - blfu nctlonal enzyme

associated to 2 EC numbers
Seed node group treatment El
(*) Group reactions by EC number. N ‘
() Treat each seed as a separate group. C/_

R http://rsat.ulb.ac.be/neat/

S. Brohée, K. Faust, G. Lima-Mendez, O. Sand, R. Janky, G. Vanderstocken, Y. Deville and J. van Helden (2008). “NeAT: a toolbox
for the analysis of biological networks, clusters, classes and pathways.” Nucleic Acids Research, 36: W444-W451.
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Appendix

P. aeruginosa example: KEGG maps overlapping with prediction

Pathways mapped to predicted subnetwork

Nodes of predicted pathway are highlighted in the KEGG map in orange (non-seed nodes) and blue (seed nodes).
Organism-specific reactions are highlighted in

Pathway (Click to see it) Reactions of pathway contained in the extracted subnetwork
Arginine and proline metabolism (pae00330) [R00832 [RP01130], R0O0411 [RPO0882], R04217 [RP03849], R04189 [RP03821], R0O5049 [RP04653]]
Lysine biosynthesis (pae00300) [R0O4475 [RP04114], R02734 [RP02447]]

Significance of overlap between predicted subnetwork and reference pathways

ref = Reference pathway

query = Predicted pathway

R = Number of nodes in reference pathway.

Q = Number of nodes in predicted pathway.

QR = Number of nodes in the intersection of the reference and predicted node set.

QvR = Number of nodes in the union of the reference and predicted node sets.

R!Q = Number of nodes present in the reference but not in the predicted node set.

Q!R = Number of nodes present in the predicted but not in the reference node set.

jac_sim = Jaccard similarity. For 2 node sets A and B: jac_sim = |A intersection B| / |A union B|)

P_val = P-value of the intersection, calculated with he hypergeometric function. Pval = P(X >= QR). The population size corresponds to the node number in the input
network (16826).

E_val = E-value of the intersection. E_val = P_val * number_of_tests. The number of tests corresponds to the number of reference pathways in the selected
metabolic database (145).

sig = Significance of the intersection. sig = -log10(E_val)

ref query R Q QR QvR RIQ Q!R jac_sim P_val E_val sig
Arginine_and_proline_metabolism predicted 85 15 9 91 76 6 0.09890 6.8e-18 9.86E-16 15.006
Lysine_biosynthesis predicted 57 15 3 69 54 12 0.04348 1.6e-05 0.00232 2.635
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P. aeruginosa example: KEGG map with prediction highlighted

| ARGININE AND PROLINE METABOLISM |
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Outlook: MICROME

O

MICI®ME

¢ MICROME is an EU framework with the aim to establish
computational and experimental pipelines for microbial
pathway and network reconstruction

¢ contribution to computational pipeline: metabolic pathway
prediction from bacterial operons and regulons




