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Functionally linked genes
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Image sources: University of Liverpool Microarray facility, RegulonDB, Comprehensive Microbial Resources, Brilli et al. BMC Bioinformatics 2008 9:551

co-expression 
of genes in 
microarray 
data

co-regulation of 
genes in operons 
and regulons

co-localization of 
genes in the 
genome

co-occurrence of 
genes across taxa 
(phylogenetic 
profiles)

groups of associated genes 
assumed to be involved in a 
common function



• common approach to link genes to functions: 
map genes to known functional units (reference 
pathways)

• example: map genes of operon aruCFGDB 
(Pseudomonas aeruginosa PAO1)

• pathway mapping tool: KEGG Mapper
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Pathway mapping/Pathway projection

PA0899 (aruB)

PA0895 (argD)

PA0896 (aruF)

PA0897 (aruG)

PA0898 (astD)
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Pathway mapping result

EC number

compound
EC number linked to 
input gene
EC number linked to a gene 
present in P. aeruginosa
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Problems of pathway mapping

• mapping does not deal well with 
query genes hitting multiple 
reference pathways

• it cannot detect organism-
specific variants of known 
pathways

• it cannot discover novel 
pathways composed of known 
building blocks

6 lysine biosynthesis variants listed 
in MetaCyc’s pathway ontology



Digitized version of the Roche Applied Science "Biochemical Pathways" wall chart.

De novo discovery of metabolic pathways
1.

 In
tr

od
uc

tio
n

http://www.roche-applied-science.com/frames/frame_metamap.htm
http://www.roche-applied-science.com/frames/frame_metamap.htm
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Network representation of metabolism

reaction 
node

compound 
node

- metabolic network represented as weighted bipartite graph with two 
node sets: a compound node set and a reaction node set
- nodes are connected by directed arcs



J. van Helden, D. Gilbert, L. Wernisch, M. Schroeder, S. Wodak (2001) “Application of Regulatory Sequence Analysis and Metabolic Network 
Analysis to the Interpretation of Gene Expression Data.” Lecture Notes in Computer Science, Vol. 2066, 147-165  

metabolic network (graph)

metabolic pathway 

R-XC1R2

R3

R1C2

C3

sub-network 
extraction

R1 R2 R3

seeds

reaction
compound

predicted node
seed node

genes, enzymes, 
reactions, compounds

metabolic databases

Metabolic pathway prediction approach
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Hub compound problem in pathway prediction
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glyceraldehyde-3-
phosphate

glucose-6-phosphate

Hub compound problem in pathway prediction

pyruvate

fructose-1,6-bisphosphate glycerate-2-phosphate

phosphoenol-pyruvate

2.7.1.11

4.1.2.13

5.3.1.9 2.7.1.40

1.2.1.12 2.7.2.3
5.4.2.1

4.2.1.11

fructose-6-phosphate

shortcut via ADP results in biochemically invalid pathway

ATP

ADP

glycerate-3-
phosphateglycerate-1,3-

bisphosphate
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Hub compound problem: Solution 1

remove hub compounds from the network

Problem 1: Which are the hub compounds?

Problem 2: What about pathways that do contain 
hub compounds (e.g. ATP biosynthesis)?

J. van Helden, L. Wernisch, D. Gilbert and S. Wodak (2002). “Graph-based analysis of metabolic networks.” Ernst Schering Res Found 
Workshop, 38:245-274.
D.A. Fell and A. Wagner (2000). “The small world of metabolism.” Nature, 18:1121-1122.
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Hub compound problem: Solution 2

2.7.1.11fructose-6-
phosphate

ATP
ADP

fructose-1,6-
bisphosphate

- use compound structures to trace atoms

- works well to find pathways between compounds

- Problem: What about pathways between reactions (coming from 
associated genes)? The atoms of which product compound should be 
traced?

M. Arita (2003). “In Silico Atomic Tracing by Substrate-Product Relationships in Escherichia coli Intermediary Metabolism.” Genome Research, 
13:2455–2466.
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Hub compound problem: Solution 3

weight the network (graph) to 
penalize hub compounds

shortest path

compound             

reaction

seed node

path finding algorithm (k-
shortest paths algorithm)

hub node

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356: 
222-236.
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Hub compound problem: Solution 3

weight the network (graph) to 
penalize hub compounds

shortest path

2

9

3

3

2
2

weighted network
(shortest path in weighted network

 is the lightest path)

compound             

reaction

seed node

path finding algorithm (k-
shortest paths algorithm)

hub node

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356: 
222-236.
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Hub compound problem: Solution 3

weight the network (graph) to 
penalize hub compounds

shortest path
lightest path

2

9

3

3

2
2

weighted network
(shortest path in weighted network

 is the lightest path)

compound             

reaction

seed node

path finding algorithm (k-
shortest paths algorithm)

hub node

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356: 
222-236.
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Hub compound problem: Solution 3

weight the network (graph) to 
penalize hub compounds

shortest path
lightest path
another lightest path

2

9

3

3

2
2

weighted network
(shortest path in weighted network

 is the lightest path)

compound             

reaction

seed node

path finding algorithm (k-
shortest paths algorithm)

hub node

D. Croes, F. Couche, S. Wodak and J. van Helden (2006). “Inferring Meaningful Pathways in Weighted Metabolic Networks.” J. Mol. Biol. 356: 
222-236.
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penalizing hub compounds with high weight works 
well in most cases

Problem:  What about rare side compounds?

1.14.15.6
(R02724)

reduced adrenal 
ferredoxin

oxidized adrenal 
ferredoxin

pregnenolone

4-methylpentanal

cholesterol

electron 
transfer

atom transfer

rare side 
compound

O2

H2O

H+

aldosterone 
biosynthesis
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Hub compound problem: Solution 3



Kotera, M., Hattori, M., Oh, M.-A., Yamamoto, R., Komeno, T., Yabuzaki, J., Tonomura, K., Goto, S., and Kanehisa, M. (2004). 
“RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions” Genome Informatics 15.

KEGG RPAIR database: splits reactions into reactant pairs

reactant pair: substrate and product of a reaction with high 
structural similarity (atom mapping)

reactant pairs have a role assigned such as main, trans, 
cofac, ligase and leave

RP02437
(main)

cholesterol

pregnenolone

RP02438
(main)

4-methylpentanal

RP00013
(cofac)

O2

H2O

RP04316
(leave)

O2

RP05956
(leave)

O2cholesterol

4-methylpentanal pregnenolone

Hub compound problem: Solution 4 
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directed 
KEGG 

LIGAND

undirected 
KEGG 
RPAIR

unweighted 16% 59%

unweighted filtered 
(with hub compounds 

removed)
57% 72%

weighted 73% 83%

Compound 
treatment

Graph 
type

Conclusion: Combination of 
weighted network with 
KEGG RPAIR annotation 
yields highest pathway 
prediction accuracy

this is in agreement with 
work by Blum & Kohlbacher, 
who combined weighted 
network with atom mapping 

K. Faust, D. Croes and J. van Helden (2009). "Metabolic path finding using RPAIR annotation." J. Mol. Biol. 388: 390-414.
T. Blum and O. Kohlbacher (2008). “Using atom mapping rules for an improved detection of relevant routes in weighted metabolic 
networks.” Journal of Computational Biology, 15: 565–576.

geometric accuracy in %, averaged over all predicted pathways

Which solution works best? 
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Pathway prediction evaluation on 55 known pathways
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- Steiner tree problem: connect seed nodes in a graph such that the 
resulting subgraph (Steiner tree) has minimal weight

- tested three heuristics (iterative REA*, Klein-Ravi, Takahashi-
Matsuyama)
- principle: calculate shortest paths repetitively and merge them 

Subgraph extraction algorithms: Steiner tree heuristics

V.M. Jimenez and A. Marzal (1999). “Computing the K Shortest Paths: a New Algorithm and an Experimental Comparison.” Proc. 3rd Int. Worksh. 
Algorithm Engineering, Springer Verlag.
P. Klein and R. Ravi (1995). “A nearly best-possible approximation algorithm for node-weighted steiner trees.” Journal of Algorithms, 19:104-115.
H. Takahashi and A. Matsuyama (1980). “An approximate solution for the Steiner problem in graphs.” Math. Japonica 24: 573-577.

* recursive enumeration algorithm



Subgraph extraction algorithms: kWalks

- idea: some edges and nodes in 
a network are more relevant than 
others to connect given seed 
nodes

- edge or node relevance: 
proportional to the expected 
number of times it is visited by 
random walkers, each starting 
from one of the seed nodes

- add edges and their adjacent 
nodes in the order of their 
relevance to the seed nodes until 
seed nodes are connected or no 
more edges can be added

J. Callut (2007). “First Passage Times Dynamics in Markov Models with Applications to 
HMM Induction, Sequence Classification, and Graph Mining.” PhD thesis, Université catholique de Louvain.
P. Dupont, J. Callut, G. Dooms, J.-N. Monette and Y. Deville (2006-2007). “Relevant subgraph extraction from 
random walks in a graph.” Research Report UCL/FSA/INGI RR 2006-07.
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Subgraph extraction algorithms: Hybrid algorithms

kWalks

seed nodes

input network 

- kWalks can be combined with Steiner tree heuristic

chorismate

phenylalanine

tryptophan

tyrosine
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Subgraph extraction algorithms: Hybrid algorithms

kWalks

seed nodes

input network 

- kWalks can be combined with Steiner tree heuristic

chorismate

phenylalanine

tryptophan

tyrosine

input network 
of reduced size 
(fewer nodes)

optional: edge 
relevances as new 
edge weights
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Subgraph extraction algorithms: Hybrid algorithms

kWalks

seed nodes

input network 

- kWalks can be combined with Steiner tree heuristic

chorismate

phenylalanine

tryptophan

tyrosine

predicted pathway

Steiner tree 
heuristic

input network 
of reduced size 
(fewer nodes)

optional: edge 
relevances as new 
edge weights

2.
 M

et
ho

ds



3.
 E

xa
m

pl
e

Example: Pseudomonas aeruginosa operon

Image source: Wikimedia Commons

PA0899 (aruB)

PA0895 (argD)

PA0896 (aruF)

PA0897 (aruG)

PA0898 (astD)

Properties:
- generic RPAIR network
- undirected, weighted
- 30,655 nodes (12,287 
reactant pairs, 6,081 
compounds)
- 49,148 edges
- compound nodes weighted 
according to their degree

Genes

Network

Pseudomonas 
aeruginosa

aruCFGDB operon

- kWalks-Takahashi-Matsuyama hybrid- map genes to reactions 
and reactant pairs



Example: Pseudomonas aeruginosa operon
Extracted pathway

reactant pair

compound

seed reactant pair

main compound linked to 
seed reactant pair
no match to any KEGG map

Arginine and proline metabolism

Lysine biosynthesis



Example: Pseudomonas aeruginosa operon
Extracted pathway

reactant pair

compound

seed reactant pair

main compound linked to 
seed reactant pair
no match to any KEGG map

Arginine and proline metabolism

Lysine biosynthesis

- no P. aeruginosa gene linked 
to EC number 2.6.1.81 in KEGG

- intermediate reactant pair 
associated to a P. 
aeruginosa gene



Example: Pseudomonas aeruginosa operon
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AST (arginine succinyl 
transferase) pathway in 
MetaCyc 

- in contrast to KEGG, EC 
number 2.6.1.81 is linked 
to a P. aeruginosa gene

Prediction: P. aeruginosa should be 
able to degrade arginine and possibly 
to grow on arginine as sole carbon 
source



Strengths

Prediction approach can be applied 
to any network and handles large 
networks (having thousands of 
nodes). 

Prediction approach only requires the 
network and seed nodes as input.

Seed nodes can be compounds or 
reactions/reactant pairs (EC numbers 
and genes).

Seed node sets can be treated.

Weights can be tuned to favor certain 
reactions/compounds (e.g. organism-
specific reactions or reactions with 
high scores in a high-throughput 
experiment).

Weaknesses

Difficulty to predict pathways 
containing cycles or spirals 
(fatty acid biosynthesis).

Difficulty to predict pathways 
in highly inter-connected 
central metabolic network 
(glycolysis).

Difficulty to link enzymes/EC 
numbers to reactions.

Strengths and weaknesses of pathway prediction



Fabian Couche
Christian Lemer
Hassan Anerhour
Frédéric Fays
Olivier Hubaut
Simon De Keyzer

BiGRe team

IBMM
Bruno André
Patrice Godard

Jérôme Callut
Yves Deville
Pierre Schaus
Jean-Noël Monette

The PhD grant of Karoline Faust was funded by 
the Actions de Recherche Concertées de la 
Communaute Française de Belgique (ARC grant 
number 04/09-307). The INGI-BiGRe collaboration 
was funded by the Région Wallonne de Belgique 
(projects aMAZE and TransMaze).

Acknowledgement



∆G = ∆G˚+RT ln([product1]...[productm]/[educt1]...[eductn])

enzymes don’t alter the equilibrium of substrate and 
product concentrations, instead they speed up 
attainment of equilibria:

image source: http://www.biology.buffalo.edu/courses/bio401/
KiongHo/Lecture32.pdf

 - two ways to treat reaction directionality:
- represent the reaction direction as 
annotated in the source database
- consider that all the reactions can 
occur in both directions 

- free energy ∆G depends on temperature 
T as well as on the product and substrate 
concentration ratio and the standard free 
energy ∆G˚

- these parameters are known for only a 
few reactions - directed metabolic graph 
therefore contains direct and reverse 
direction for each reaction
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Treatment of reaction directionality

http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf


Why bipartite?
- to avoid a compound or a reaction 
to be represented in the metabolic 
graph multiple times

Why directed?
- to avoid paths going from 
substrate to substrate (or from 
product to product) of the same 
reaction

Why are direct and reverse 
reaction direction mutually 
exclusive?
- to avoid crossing the same 
reaction twice

C

B

A
R1

R2

R3

reaction R1 is represented
by several edges

compound A is represented by 
several edges

graphs with only one node set:

A

B

CR1

undirected graphs:

J. van Helden, L. Wernisch, D. Gilbert, S. Wodak, “Graph-based analysis of metabolic networks”, Ernst Schering Research Foundation 
Workshop, Springer-Verlag 38 (2002), 245-274.

R1

R1

A

A
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Graph representation of metabolic data

R1 forward

R1 reverse

A

B

C



NADH

prephenate

Hub compound problem: Main and side compounds 

4-hydroxyphenylpyruvate

NAD+

main compounds: carbon atom transfer
side compounds: donors/acceptors of energy, 
electrons or functional groups
but: distinction not always clear (e.g. glutamate)

CO2

PREPHENATE
DEHYDROG-

RXN
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glutamine

glutamate

main changes 
on substrate 
(main)

functional groups 
transferred by 
transferases (trans)

L-valine

RP00024 RP06488

L-alanine

cofactor pairs in 
reactions involving oxido-
reductases (cofac)

pyruvate

RP00002

NAD+

NADH
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RPAIR classes



ammonia

glutamine

release or addition 
of inorganic 
compounds 
(leave)

RP05752

consumption of nucleoside 
triphosphates by ligases (ligase)

RP00003

ATP

ADP
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RPAIR classes



annotated pathway nodes

true positives (TP)

false negatives 
(FN)

false positives (FP)

 inferred pathway nodes

sensitivity Sn: TP/(TP + FN)

positive predictive value PPV: TP/(TP + FP)

arithmetic accuracy: (Sn + PPV)/2

geometric accuracy: √(Sn·PPV)
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Accuracy of pathway prediction



kWalks 
(kWalks with 

three 
iterations)

Takahashi/
Matsuyama 

(iterative REA)

kWalks/Takahashi-
Matsuyama 

(iterative REA) 
hybrid

unweighted 62% (64%) 53% (43%) - (55%)

weighted 60% (68%) 76% (68%) 77% (68%)

Weight policy

Algorithm

- evaluation carried out on 71 yeast-specific reference 
pathways in MetaCyc network

Multiple-end pathway prediction evaluation results
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K. Faust, P. Dupont, J. Callut, and J. van Helden (2010). “Pathway discovery in metabolic networks by subgraph 
extraction.” Bioinformatics 26, 1211-1218.

geometric accuracy in %, averaged over all predicted pathways



Seed reaction grouping problem
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Genes

1.1.1.1 3.1.3.15EC numbers

Reactions

Seed groups
(EC grouping)

R00623 R00754

R02124 R04805

... (18)

R03457

Enzymes

R03013

alcohol 
dehydrogenase 

(broad-specificity 
enzyme)

imidazoleglycerol-
phosphate dehydratase 
and histidinol-
phosphatase (bifunctional 
enzyme)

R00623

R00754R02124

... (18)

R03457 R03013

adhP hisB



- 2 genes associated 
to the same EC 
number (2 different 
sub-units of the same 
enzyme) 

- bifunctional enzyme 
associated to 2 EC numbers
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Example: Pseudomonas aeruginosa operon

Gene to reactant pair mapping

http://rsat.ulb.ac.be/neat/

- N:N relationship between genes, EC numbers, reactions and reactant pairs
- seed reactant pairs can be grouped gene-wise, EC number-wise or reaction-wise

S. Brohée, K. Faust, G. Lima-Mendez, O. Sand, R. Janky, G. Vanderstocken, Y. Deville and J. van Helden (2008). “NeAT: a toolbox 
for the analysis of biological networks, clusters, classes and pathways.” Nucleic Acids Research, 36: W444-W451.

http://rsat.ulb.ac.be/neat/
http://rsat.ulb.ac.be/neat/
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P. aeruginosa example: KEGG maps overlapping with prediction



P. aeruginosa example: KEGG map with prediction highlighted
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Outlook: MICROME

MICROME is an EU framework with the aim to establish 
computational and experimental pipelines for microbial 
pathway and network reconstruction

contribution to computational pipeline: metabolic pathway 
prediction from bacterial operons and regulons


