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Biological background

metabolic data:

compounds (metabolites)

reactions (carried out by 
enzymes or occurring 
spontaneously)

pathways (annotated 
combinations of reactions 
and compounds)

sources for metabolic 
data:

biochemical textbooks

metabolic databases

part of aromatic amino acid biosynthesis in E. coli (BioCyc)

M. Kanehisa et al. (2008). "KEGG for linking genomes to life and the environment.", 
Nucleic Acids Research 36: D480-D484.
R. Caspi et al. (2008). “The MetaCyc Database of metabolic pathways and enzymes 
and the BioCyc collection of Pathway/Genome Databases.” Nucleic Acids Research 
36: D623-D631. 
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Biological background

trpA

trpB

trpC

tyrB

tyrA

pheA

tyrA, pheA
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part of aromatic amino acid biosynthesis in E. coli (BioCyc)

trpLEDCBA operon

pheLA 
operon
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Biological background

trpA

trpB

trpC

tyrB

tyrA

pheA

tyrA, pheA

trpD, trpE

trpD

part of aromatic amino acid biosynthesis in E. coli (BioCyc)

trpLEDCBA operon

pheLA 
operon

tyrB 
operon

aroF-tyrA 
operon

TrpR repressor of 
trpLEDCBA operon
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Biological background

metabolic graph

metabolic data can 
be represented in 
form of bipartite 
graphs consisting of 
compound and 
reaction nodes

Building a metabolic network from all known reactions

biochemical 
pathways wall 
chart (Roche)
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Biological question

organism with 
annotated genes 
 and unknown 
metabolism
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Biological question

organism with 
annotated genes 
 and unknown 
metabolism

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000
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Biological question

gene group of interest 
Gene A

Gene B

Gene C

Gene D

organism with 
annotated genes 
 and unknown 
metabolism

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000
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Biological question

enzymes coded 
by genes 

Enzyme A

Enzyme B

Enzyme C

gene group of interest 
Gene A

Gene B

Gene C

Gene D

organism with 
annotated genes 
 and unknown 
metabolism

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000
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Biological question

enzymes coded 
by genes 

Enzyme A

Enzyme B

Enzyme C

gene group of interest 
Gene A

Gene B

Gene C

Gene D

organism with 
annotated genes 
 and unknown 
metabolism

reactions carried 
out by enzymes 
R-A1 R-B1 R-C1

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000
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Biological question

enzymes coded 
by genes 

Enzyme A

Enzyme B

Enzyme C

metabolic 
pathway 

R-XC1R-A1

R-B1

R-C1C2

C3

gene group of interest 
Gene A

Gene B

Gene C

Gene D

organism with 
annotated genes 
 and unknown 
metabolism

reactions carried 
out by enzymes 
R-A1 R-B1 R-C1

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000
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Biological question

enzymes coded 
by genes 

Enzyme A

Enzyme B

Enzyme C

metabolic 
pathway 

R-XC1R-A1

R-B1

R-C1C2

C3

gene group of interest 
Gene A

Gene B

Gene C

Gene D

organism with 
annotated genes 
 and unknown 
metabolism

reactions carried 
out by enzymes 
R-A1 R-B1 R-C1

co-regulated genes 
(e.g. operons)

co-expressed genes 
(obtained from micro-array data)

image obtained from RegulonDB

conditions

genes

image taken from Gasch et al., 
Mol. Biol. of the Cell, 2000

In which metabolic 
pathway(s) 
participate the 
enzymes coded by 
genes assumed to be 
functionally related?



J. van Helden, D. Gilbert, L. Wernisch, M. Schroeder, S. Wodak (2001) “Application of Regulatory Sequence Analysis and Metabolic 
Network Analysis to the Interpretation of Gene Expression Data.” Lecture Notes in Computer Science, Vol. 2066, 147-165  

given a set of seed reactions, find meaningful 
pathways connecting them in a metabolic graph

metabolic graph (containing all 
known reactions and compounds) 
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Metabolic pathway inference - principle

metabolic pathway 

R-XC1R-A1

R-B1

R-C1C2

C3

metabolic pathway 
inference

R-A1 R-B1 R-C1

seed reactions 

reaction
compound

inferred node
seed node



Pathway inference methods
M

et
ho

ds

How can we extract subgraphs 
(pathways) from metabolic graphs?



Two-end path finding - principle  
M

et
ho

ds

- idea: infer pathway given 
two seed nodes using a 
path finding algorithm (k-
shortest paths algorithm)

- problem: highly 
connected compounds 
(such as H2O and ATP) are 
preferentially traversed



Two-end path finding - reaction traversal 
M

et
ho

ds

How to traverse a reaction?

shikimate

substrates products

ATP ADP

shikimate-3-
phosphate

R02412

traversal from main to side compound: biochemically irrelevant

shikimate ADP

reaction R02412



Two-end path finding - evaluation
M

et
ho

ds D. Croes, F. Couche, S. Wodak and J. van Helden (2006). "Inferring Meaningful Pathways in Weighted Metabolic 
Networks." J. Mol. Biol. 356: 222-236.
D. Croes, F. Couche, S. Wodak and J. van Helden (2005). "Metabolic PathFinding: inferring relevant pathways in 
biochemical networks." Nucleic Acids Research 33: W326-W330.
Kotera, M., Hattori, M., Oh, M.-A., Yamamoto, R., Komeno, T., Yabuzaki, J., Tonomura, K., Goto, S., and Kanehisa, M. 
(2004). “RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions” Genome Informatics 15.
K. Faust, D. Croes and J. van Helden (2008). "Metabolic path finding using RPAIR annotation." Submitted.

Graph type
Average geometric 

accuracy

weighted KEGG graph incorporating main-side 
compound annotation (weighted KEGG RPAIR 

graph)
83%

unweighted KEGG graph incorporating main-
side compound annotation (unweighted KEGG 

RPAIR graph)
72%

weighted KEGG graph 73%

filtered KEGG graph (hub compounds 
removed)

57%

unweighted KEGG graph 16%

evaluation on 55 
linear pathways from 
three organisms (E. 
coli, S. cerevisiae, H. 

sapiens)



Multiple-end pathway inference  
M

et
ho

ds

V.M. Jimenez and A. Marzal (1999). “Computing the K Shortest Paths: a New Algorithm and an Experimental Comparison.” Proc. 3rd Int. Worksh. 
Algorithm Engineering, Springer Verlag

- extend two-end path 
finding to multiple 
seeds pathway 
inference by calling a 
k-shortest paths 
algorithm (REA) 
repetitively

Pairwise k-shortest paths - principle

each edge has a weight of 
one



Multiple-end pathway inference  
M

et
ho

ds

- for each seed node 
pair, obtain all 
lightest paths with 
a k-shortest paths 
algorithm 

Pairwise k-shortest paths - paths computation

each edge has a weight of 
one



- merge lightest paths 
in the order of their 
weight until either all 
seed nodes are 
connected or all 
lightest paths are 
merged

Pairwise k-shortest paths - subgraph extraction

Multiple-end pathway inference  
M

et
ho

ds



- idea: some edges 
and nodes in a 
graph are more 
relevant than others 
to connect given 
seed nodes

kWalks algorithm - principle

Multiple-end pathway inference  
M

et
ho

ds

P. Dupont, J. Callut, G. Dooms, J.-N. Monette and Y. Deville (2006-2007). “Relevant 
subgraph extraction from random walks in a graph.” Research Report UCL/FSA/INGI RR 
2006-07, November 2006.



Multiple-end pathway inference  
M

et
ho

ds

kWalks algorithm - edge relevance computation

- edge or node 
relevance: proportional 
to the expected 
number of times it is 
visited by random 
walkers, each starting 
from one of the seed 
nodes



- list of edge 
and node 
relevances

Multiple-end pathway inference  
M

et
ho

ds

kWalks algorithm - output



- add edges and their 
adjacent nodes in the 
order of their 
relevance to the seed 
nodes until seed 
nodes are connected 
or no more edges 
can be added

Multiple-end pathway inference  
M

et
ho

ds

kWalks algorithm - subgraph extraction



Pathway inference evaluation  
Ev

al
ua

tio
n

How accurately can these algorithms 
infer known pathways from metabolic 

graphs?



Pathway inference evaluation - example  
Ev

al
ua

tio
n

Aromatic amino acid biosynthesis (E. coli) 

reference pathway consisting of:
- 15 compounds (without terminal compounds)

- 19 reactions
- 3 branches (leading to the 3 aromatic 
amino acids tryptophan, phenylalanine 
and tyrosine)

chorismate biosynthesis

tryptophan biosynthesis

phenylalanine and 
tyrosine biosynthesis



reaction

compound

true positive
false positive
seed node

Pathway inference evaluation - example  
Ev

al
ua

tio
n

- graph: weighted, directed 
MetaCyc graph 

- algorithm: pair-wise k-shortest 
paths algorithm 

True positives: 2
False positives: 4
False negatives: 32
Sensitivity: 0.06
Positive predictive value: 0.33
Arithmetic accuracy: 0.2
Geometric accuracy: 0.02

Pathway inferred with 2 seed reactions



- graph: weighted, directed 
MetaCyc graph 

- algorithm: pair-wise k-shortest 
paths algorithm 

True positives: 28
False positives: 2
False negatives: 0
Sensitivity: 1.0
Positive predictive value: 0.87
Arithmetic accuracy: 0.93
Geometric accuracy: 0.93

Pathway inference evaluation - example  
Ev

al
ua

tio
n

Pathway inferred with 6 seed reactions reaction

compound

true positive
false positive
seed node



Pathway inference evaluation in MetaCyc  
Ev

al
ua

tio
n

Reference pathways

- 71 pathways taken from the Saccharomyces cerevisiae 
pathways annotated in MetaCyc (curated tier of BioCyc)

- minimal pathway size: 5 nodes 

- average node number: 13

- 34 branched and 17 cyclic pathways 

Metabolic graph

- MetaCyc Release 11.0 (all small molecule compounds and 
their reactions) 

- 4,891 compound nodes and 5,358 reaction nodes 

Evaluation procedure

- for each reference pathway, do inference with terminal 
reactions of the reference pathway as seed nodes

- repeat inference by adding one additional randomly 
chosen reaction at each step to the seed reaction set

Saccharomyces cerevisiae, taken from              
http://www.bath.ac.uk/bio-sci/wheals2.htm

MetaCyc metabolic graph displayed in 
Cytoscape

http://www.bath.ac.uk/bio-sci/wheals2.htm
http://www.bath.ac.uk/bio-sci/wheals2.htm


average geometric accuracy*: ~68%average geometric accuracy*: ~60%

Evaluation in weighted MetaCyc graph
Ev

al
ua

tio
n

number of seed reactions given (0 = terminal seed reactions only)

re
fe
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nc

e 
pa
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w
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kWalks 
pair-wise k- 

shortest paths
geometric 
accuracy 

sya
wh tap

4−hydroxyproline degradation
TCA cycle −− aerobic respiration

TCA cycle variation VIII
UDP−N−acetylgalactosamine biosynthesis

aldoxime degradation
allantoin degradation

arginine biosynthesis III
asparagine degradation I

aspartate superpathway 1
aspartate superpathway 2
aspartate superpathway 3

bifidum pathway
butanediol fermentation
chorismate biosynthesis
cysteine biosynthesis II

de novo biosynthesis of pyrimidine ribonucleotides
fatty acid oxidation pathway

gluconeogenesis
glutamate degradation I

glutamate fermentation I−the hydroxyglutarate pathway
glycerol degradation II

glycolysis I
heme biosynthesis II

histidine biosynthesis I
homocysteine and cysteine interconversion

homoserine and methionine biosynthesis
homoserine biosynthesis
isoleucine biosynthesis I

isoleucine degradation III
leucine biosynthesis

lipoxygenase pathway
mannosyl−chito−dolichol biosynthesis

methionine biosynthesis I
methionine biosynthesis III

non−oxidative branch of the pentose phosphate pathway
polyamine biosynthesis I

polyamine biosynthesis III
pyridine nucleotide biosynthesis

pyridine nucleotide cycling
pyruvate oxidation pathway

riboflavin and FMN and FAD biosynthesis
salvage pathways of purine and pyrimidine nucleotides

salvage pathways of purine nucleosides
salvage pathways of pyrimidine ribonucleotides 1
salvage pathways of pyrimidine ribonucleotides 2

serine biosynthesis
serine−isocitrate lyase pathway

spermine biosynthesis
sucrose biosynthesis

sucrose degradation I
sucrose degradation III

superpathway of fatty acid oxidation and glyoxylate cycle 1
superpathway of fatty acid oxidation and glyoxylate cycle 2

superpathway of glycolysis and TCA variant VIII
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass

superpathway of isoleucine and valine biosynthesis 1
superpathway of isoleucine and valine biosynthesis 2

superpathway of leucine, valine, and isoleucine biosynthesis 1
superpathway of lysine, threonine and methionine biosynthesis

superpathway of phenylalanine, tyrosine and tryptophan biosynthesis
superpathway of ribose and deoxyribose phosphate degradation 1
superpathway of ribose and deoxyribose phosphate degradation 2

superpathway of serine and glycine biosynthesis
superpathway of sulfur amino acid biosynthesis

threonine biosynthesis
trehalose biosynthesis III
tryptophan biosynthesis

urate degradation
ureide degradation
valine biosynthesis

xylulose−monophosphate cycle
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1.0

*average geometric 
accuracy: accuracy 
averaged over all 
pathway inferences 
done for one 
algorithm



- kWalks is quick (order of seconds) and has 
high sensitivity, but lower positive predictive 
value than pair-wise k-shortest paths

- pair-wise k-shortest paths: high geometric 
accuracy, but is too slow (runtime increases 
quadratically with seed node number!)

Pathway inference evaluation - results
Ev

al
ua

tio
n



pair-wise 
k-shortest 

paths
iteration

input graph of 
reduced size

kWalks

edge identifier                             edge relevance
PSERTRANSAM-RXN<→3-P-SERINE                          0.043
3-P-HYDROXYPYRUVATE→PSERTRANSAM-RXN<        0.043
PGLYCDEHYDROG-RXN>→3-P-HYDROXYPYRUVATE 0.041
2.5.1.65-RXN>→CYS                                         0.026
3-P-SERINE→2.5.1.65-RXN>                                         0.026

edge relevances

edge 
weights

Input

seed reactions

inferred 
pathway

input graph 
(directed or 
undirected) 

initial edge weights
edge identifier                      edge weight

PSERTRANSAM-RXN<→3-P-SERINE          0.03
2.5.1.65-RXN>→CYS                         0.01
3-P-SERINE→2.5.1.65-RXN>                         0.01
...

Parameter tuning  
Ev

al
ua

tio
n

R-XC1R-A1

R-B1

R-C1C2

C3



Parameter tuning - Parameters and their values  
Ev

al
ua

tio
n

Parameter Values

Algorithm
KWalks, pair-wise k-shortest paths, hybrid 

(combination of kWalks and pair-wise k-shortest 
paths)

Input edge weights

Unit (all weights set to 1), compound degree 
(reactions: weight of 1, compounds: node degree 

as weight), inflation of weights (weight to the 
power of positive integer)

KWalks iteration 
number

1, 3 and 6

Hybrid: use of kWalks 
edge relevances as 

weights in pair-wise k-
shortest paths

True/False

Graph directionality
Directed (including direct and reverse direction 

for each reaction)/undirected

Hybrid: size of 
subgraph extracted by 

kWalks
0.1% to 10% of input graph edge number



- positive predictive value of kWalks can be 
increased by iteration and combination with pair-
wise k-shortest paths (hybrid approach)

- with optimal parameter values set, kWalks and 
pair-wise k-shortest paths reach similar average 
geometric accuracies (~68%)

- the hybrid algorithm (with optimal fixed subgraph 
size) yields an average geometric accuracy of 72%

Parameter tuning - results  
Ev

al
ua

tio
n



Ralstonia metallidurans (Cupriavidus 
metallidurans) CH34
© Groupe Toxicologie humaine et 
environnementale, Laboratoire Pierre Süe, 
UMR 9956 CNRS/CEA Saclay/Centre 
commun de microscopie électronique d’Orsay

1 chromosome, 2 mega 
plasmids (pMol30 and 
pMol28), overall size: ~6 Mb

A
pp

lic
at

io
n

Analysis of R. metallidurans operons

200 nm

- gram-negative bacterium
- resistance to heavy metals (zinc, nickel, 
cadmium, cobalt, copper, ...)
- metabolism only reconstructed by automatic 
procedures (e.g. PathoLogic)
- 6,176 protein-coding genes, of those 832 
enzymes (source: BioCyc)

Ralstonia metallidurans CH34 (Cupriavidus metallidurans CH34)



Analysis of R. metallidurans operons
A
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n

Seed reactions

- 4,060 operons predicted in 
Ralstonia metallidurans1

- KEGG provides R. metallidurans 
gene-reaction mappings

- 294 operons could be associated 
to more than one reaction

1) R. Janky and J. van Helden: infer-operons (RSAT)

Metabolic graph

- weighted KEGG RPAIR graph 
incorporating main/side compound 
annotation (KEGG version 41.0) 

- graph contains all compounds and 
reactant pairs in KEGG RPAIR, it is 
not organism-specific

Pathway inference

- hybrid algorithm

- 262 successful pathway inferences
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Analysis of R. metallidurans operons
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Study case I: Obtaining reactions for genes

operon 
YP_587009.1

R05300 R06990 R02991

A04902 A10163 A02666

 cis,cis-Muconate ↔ 

Muconolactone
3-Oxoadipate ↔ 2-Oxo-2,3-

dihydrofuran-5-acetate

reactions

main RPAIRs 
(seed nodes)

enzymes
(EC 

numbers)

genes

pathway

Rmet_4878 Rmet_4877 Rmet_4876 Rmet_4875

A04999 A10149 A04130

R05390 R04489R06989

4-Carboxy-2-hydroxymuconate 
semialdehyde ↔ 2-Hydroxy-2-

hydropyrone-4,6-dicarboxylate

 3-Methyl-cis,cis-
hexadienedioate ↔ 4-

Methylmuconolactone

3-Chloro-cis,cis-muconate 
↔ Protoanemonin

2-Oxo-2,3-dihydrofuran-5-
acetate ↔ Muconolactone

A
pp

lic
at

io
n

6 seed node 
groups

muconate 
cycloisomerase 
(5.5.1.1)

muconolactone 
delta-isomerase 
(5.3.3.4)

uncharac-
terized protein 
UPF0065

3-oxoadipate 
enol-lactonase 
(3.1.1.24)



Study case I: Pathway mapping

result of the KEGG pathway mapping tool 

A
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at
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n

Rmet_4878 Rmet_4877 Rmet_4876 Rmet_4875 operon



Inferred pathway combines 2 known pathways

Study case I: Pathway inference
A

pp
lic

at
io

n

reaction
compound

inferred node
seed node

spontaneous reaction

KEGG pathway map
Benzoate degradation 
via hydroxylation

KEGG pathway map
1,4-Dichlorobenzene Degradation

orphan seed 

no R. metallidurans gene in KEGG 
associated to this reaction step

compound occurring in both KEGG maps

Rmet_4878 Rmet_4877 Rmet_4876 Rmet_4875 operon
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Study case II: Obtaining reactions for genes
operon 

YP_582871.1

R01715 R00694

A01711 A02871

 L-Phenylalanine ↔ L-

Arogenate

L-Tyrosine ↔ 3-(4-

Hydroxyphenyl)pyr
uvate

reactions

main 
RPAIRs 
(seed 

nodes)

genes

pathway

Rmet_0716 Rmet_0717 Rmet_0718 Rmet_0719

A01465 A01056 A00014

R01373 R03243R00691

L-Glutamate ↔ 2-

Oxoglutarate

Chorismate 
↔ Prephenate

Phenylpyruvate 
↔ Prephenate L-Phenylalanine ↔ 

Phenylpyruvate

L-Histidinol phosphate 
↔ 3-(Imidazol-4-yl)-2-

oxopropyl phosphate

A00057

R00734

A00621

R01728

A00334

Prephenate ↔ 3-(4-

Hydroxyphenyl)pyruvate

R03460

A03070 A03071

5-O-(1-Carboxyvinyl)-3-
phosphoshikimate ↔ Shikimate 

3-phosphate

Phosphoenolpyruvate ↔ 

5-O-(1-Carboxyvinyl)-3-
phosphoshikimate

6 seed node 
groups

prephenate 
dehydratase /
chorismate mutase 
(4.2.1.51, 5.4.99.5) 

histidinol- 
phosphate 
aminotransferase 
(2.6.1.9)

prephenate 
dehydrogenase 
(1.3.1.12)

3-phosphoshikimate 
1-carboxyvinyl-
transferase (2.5.1.19)

enzymes
(EC 

numbers)
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Study case II: Pathway mapping

result of the KEGG pathway mapping tool 

Rmet_0716 Rmet_0717 Rmet_0718 Rmet_0719 operon



Tyrosine

A
pp

lic
at

io
n

Study case II: Pathway inference

KEGG pathway map
Phenylalanine, Tyrosine and 
Tryptophan Biosynthesis

reaction
compound

inferred node
seed node

Inferred pathway corresponds to a known pathway

Rmet_0716 Rmet_0717 Rmet_0718 Rmet_0719 operon



- directions of reactions cannot be inferred 
(metabolic graph is undirected or includes both 
directions for each reaction)

- inferring densely interconnected regions of 
metabolism (e.g. glycolysis, TCA cycle) with high 
accuracy requires many seeds

Limitations of pathway inference
Li

m
ita

tio
ns



- combination of kWalks and pair-wise k-shortest 
paths in the hybrid approach yields highest 
accuracies

- application to biological data set (operons of R. 
metallidurans): inference of relevant metabolic 
pathways that consist mostly of known pathways or 
their combination

Conclusion
C

on
cl

us
io

n



- test Steiner tree algorithms in combination with 
kWalks (work in progress)

- apply pathway inference to other biological data sets 
(micro-array data from R. metallidurans and S. cerevisiae)

- make pathway inference available as Web Service

Next steps
N

ex
t 

st
ep

s
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y

Availability

Two-end path finding in weighted KEGG 
RPAIR graph (incorporating main/side 
compound annotation):

http://rsat.ulb.ac.be/neat/ (Metabolic path 
finding)

http://rsat.ulb.ac.be/rsat/
http://rsat.ulb.ac.be/rsat/


Why bipartite?

to avoid a compound or a reaction to 
be represented in the metabolic 
graph multiple times

Why directed?

to avoid paths going from educt to 
educt (or from product to product) 
of the same reaction

Why weighted?

to avoid highly connected compounds

C

B

A
R1

R2

R3

reaction R1 is represented
by several edges

compound A is represented 
by several edges

graphs with only one node set:

A

B

CR1

undirected graphs:

J. van Helden, L. Wernisch, D. Gilbert, S. Wodak, “Graph-based analysis of metabolic networks”, Ernst Schering Research Foundation 
Workshop, Springer-Verlag 38 (2002), 245-274.

A
pp

en
di

x
Graph representation of metabolic data

R1

R1

A

A



∆G = ∆G˚+RT ln([product1]...[productm]/[educt1]...[eductn])

enzymes don’t alter the equilibrium of substrate and 
product concentrations, instead they speed up 
attainment of equilibria:

image source: http://www.biology.buffalo.edu/courses/bio401/
KiongHo/Lecture32.pdf

 - two ways to treat reaction directionality:

- represent the reaction direction as 
annotated in the source database

- consider that all the reactions can 
occur in both directions 

- free energy ∆G depends on temperature T 
as well as on the product and substrate 
concentration ratio and the standard free 
energy ∆G˚

- these parameters are known for only a few 
reactions - directed metabolic graph 
therefore contains direct and reverse 
direction for each reaction
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Treatment of reaction directionality

http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf
http://www.biology.buffalo.edu/courses/bio401/KiongHo/Lecture32.pdf


Arc weight computation pair-wise 
k-shortest paths

- weight of arc a: mean of weight of head 
node n_h and weight of tail node n_t

w(a) = w(n_h)+w(n_t)/2

Arc weight computation kWalks

- weight of arc a: inverse mean of weight of 
head node n_h and weight of tail node 
n_t:  

      w(a) = 2/(w(n_h)+w(n_t))

Inflation of arc weight by inflation 
factor z:

      w(a)z

Node weighting schemes

compound node: degree or unit weight (1)

reaction node: unit weight (1)
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Weighting schemes
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Construction of KEGG RPAIR graph I

Kotera, M., Hattori, M., Oh, M.-A., Yamamoto, R., Komeno, T., Yabuzaki, J., Tonomura, K., Goto, S., and Kanehisa, M. 
(2004). “RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions” Genome Informatics 15.
M. Kanehisa, S. Goto, S. Kawashima and A. Nakaya (2002). "The KEGG databases at GenomeNet." Nucleic Acids Research 
30(1): 42-46.

- KEGG RPAIR: database of manually compiled reactant pairs that covers 
6,261 reactions (1,128 reactions are not covered)

- reactant pairs: reaction-specific main/side compound annotation 

- reactant pairs are classified as main, cofac, trans, ligase or leave
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Construction of KEGG RPAIR graph II

graph constructed from all reactant pairs listed in KEGG and their 
associated compounds

A00024 A05695 A05752

waterglutamine

glutamate
ammonia

presentation of reaction 
R00256 in the KEGG 

RPAIR graph
glutamine

ammonia

glutamine
water

“main changes on 
substrates” (main)

release of inorganic 
compound (leave)

addition of inorganic 
compound (leave)

A00024 A05752 A05695

glutamateglutamate

R00256

products

substrates

reaction R00256 divided in its reactant pairs



kWalks

- random walks start in any node of group A and end in any 
node of group B

Pair-wise k-shortest paths

- multiple to multiple end path finding by introducing pseudo 
start and end nodes

start nodes

pseudo start 
node

pseudo end node

end nodesA
pp
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di
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Treatment of seed node groups
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Accuracy of pathway inference

annotated pathway nodes

true positives (TP)

false negatives (FN)

false positives (FP)

 inferred pathway nodes

sensitivity Sn: TP/(TP + FN)

positive predictive value PPV: TP/(TP + FP)

arithmetic accuracy: (Sn + PPV)/2

geometric accuracy: √(S·PPV)


