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Detecting bacterial associations
in the human microbiome




1. Introduction

Examples for microbial relationships
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Gause (1934) “The Struggle for Existence”, Williams & Wilkins.

Kolenbrander et al. (2002) “Communication among Oral Bacteria”, Microbiol. and Mol. Biol. Reviews 66, pp. 486-505.
Woyke, T. et al. (2006) “Symbiotic insights through metagenomic analysis of a microbial consortium”, Nature 443, pp. 950-955.




1. Introduction

Detecting ecological relationships from
presence/absence data

» Jared Diamond suggested that competition between species could be seen
from their presences/absences across habitats (checkerboard pattern)
 checkerboard-like co-occurrence patterns have been found for micro-
organisms as well (Horner-Devine et al.)
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Diamond, J. (1975) “Assembly of species communities”, pp. 342-444 in “Ecology and
evolution of communities” edited by Cody and Diamond, Harvard University Press.
Horner-Devine M.C. et al. (2007) “A Comparison Of Taxon Co-Occurrence Patterns For
Macro- And Microorganisms” Ecology 88, pp. 1345-1353.




1. Introduction

Co-occurrence analysis in a nut shell

H_H:H: mutual exclusion (checker
I . board)/anti-correlation

H co-occurrence/correlation
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1. Introduction

Reasons for association

Why would two taxa consistently occur together or avoid each other across samples?

ecological relationships

predator/parasite (win-loss)

commensalism
(win-neutral)

prey/host (loss-win)

niche overlap

. L
= 7 X .
c a PR
= o §7A\ AN
3 =
£ (T Y i | | 5 y 7
] B
H— B
(1]

Q
:
€ o

(8]

amensalism

(loss-neutral)

Adapted from Lidicker, W.Z. (1979) “A Clarification of
Interactions in Ecological Systems”, BioScience 29, pp. 475-477.

Hutchinson, G.E. (1957) “Concluding remarks”, Cold Spring
Harbour Symposium on Quantitative Biology 22, pp. 415-427.




1. Introduction

Inferring networks

 network inference: the problem of
finding relationships between objects
(genes, proteins, metabolites,
species...) whose presence/absence
or abundance was observed

repeatedly



1. Introduction

Example for similarity-based network

inference

e task: obtain functional protein modules from co-occurrences of genes

organisms
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Nature Biotechnology 21, pp. 1055-1062.

Date, S.V. and Marcotte, E.M. (2003) “Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages”

’




1. Introduction

Example for sparse regression-based
network inference

* task: identify gene regulatory network from microarray data

for each gene, find the regulators of
that gene among all other genes:
do sparse regression (using
time/conditions regression trees) to select the subset
of input genes that predicts best the A
behavior of the output gene
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Huynh-Thu et al. (2010) “Inferring regulatory networks from expression data using tree-based methods”, PLoS one 5, e12776.




2. Goal

Goal: Infer network of microbial
relationships

several recent metagenomic data sets measure microbial abundance
across a large number of samples

network inference techniques can identify significant relationships
between microorganisms from these data

significant co-presence (co-occurrence of two microbes across samples)
can be interpreted as niche overlap, mutualism, commensalism etc.

significant mutual exclusion (avoidance of two microbes across samples)
can be interpreted as alternative niche preference, competition,
amensalism etc.
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3. Data

» 18 body sites (15 sites in males)

* 242 healthy individuals
sampled up to three times

* 5,177 samples 16S RNA-
sequenced

* > 3.5 TB metagenomic
sequences

* Metadata collected (sex, age,
ethnicity, BMI, pulse, medication,

smoking behavior, vaginal pH,
etC.) @ rirmicutes @ rroteobacteria

. Actinobacteria . Fusobacteria

. -
o

Bacteroidetes . others

distribution of phyla across human body
sites, according to 16S sequencing

The Human Microbiome Project Consortium (2012) “A framework for human microbiome research”, Nature 486, pp. 215-221.




3. Data

16S sequencing and processing

e 5,177 samples pyro-sequenced (454 GS FLX Titanium) in 4 different
centers (for V1-V3, V3-V5 and V6-V9 regions of 16S rRNA)

* 16S rRNA sequencing benchmarked on mock communities of known
composition

* raw 16S rRNA reads were processed with mothur and Qiime pipelines

 mothur assigned reads to ~730 phylotypes and to ~9,450 OTUs
(operational taxonomic units) using the RDP (Ribosomal Database
Project) phylogenetic tree

* likely mislabeled samples removed using a machine learning approach
(Knights, 2010)

Human Microbiome Project Data Generation Working Group (2012) “Evaluation of 16S rDNA-Based Community Profiling for Human
Microbiome Research” PLoS ONE 7(6) e39315.

Schloss, P. et al. (2009) “Introducing mothur: Open-source, platform-independent, community-supported software for describing
and comparing microbial communities.” Appl. Environ. Microbiol. 75, pp. 7537-7541.

Jumpstart Consortium Human Microbiome Project Data Generation Working Group “Evaluation of 16S rDNA-based Community
Profiling for Human Microbiome Research”, PLoS one 7, e39315.

Cole, J.R. et al. (2009) “The Ribosomal Database Project: improved alignments and new tools for rRNA analysis”, Nucleic Acid
Research 37, pp. D141-D145.

Knights, R. et al. (2010) “Supervised classification of microbiota mitigates mislabeling errors.” ISME 5, pp. 570-573.




4. Methods

Network inference from HMP data -
Overview

* apply network inference strategies to predict relationships between
bacterial taxa from the 16S HMP V35 phylotype data set (genus level)

... (392 columns, subjects
e o ® sampled multiple times) positive

118441 o v
D ¢ aZ o D9

J network \ negative
inference intra-body-
... (12,450 rows, taxa in body sites) site link
high abundance count matrix network
low abundance joint work with Huttenhower lab




4. Methods

Assessing strength of relationships
between microorganisms

9, O |
) ) ) targkegaxon

abundance profiles across samples
source taxa

Pair-wise relationships (similarity) Complex relationships (sparse regression)

- Pearson correlation - GLBM (generalized, linear boosted

- Spearman correlation models) to predict a target taxon from a
- Kullback-Leibler dissimilarity (KLD) set of source taxa by regression

- Bray Curtis dissimilarity (BC) - score: the goodness of fit (how well

combined source taxa profiles predict
target taxon profile)

Fah Sathirapongsasuti and Curtis
Huttenhower



4. Methods

Computing significance of
relationships |

e for each of the five methods (Pearson, Spearman, Kullback-Leibler, Bray
Curtis, GLBM), compute permutation and bootstrap edge scores

9,
9

5 scores per edge, for each score:
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4. Methods

assuming normality for the bootstrap distribution)

Frequency

Computing significance of
relationships Il

Edge- and method-specific p-value is computed with a Z-test (p-
value of the null distribution mean given the bootstrap distribution,
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4. Methods

Network building

multigraph graph
Spearman
@J —> O J > —— J
p-value > multiple- -
merge testing
correction

merge method-specific p-values using Sime’s method

apply Benjamini-Hochberg Yekutieli False Discovery Rate correction on
merged p-values

after correction, remove all p-values above the threshold (set to 0.05)

represent remaining relationships as a network



4. Methods

Problem: Data normalization and
compositionality

technical errors/differences in processing lead to different total

abundances across samples

sample-wise normalization necessary (i.e. division of abundances in
a sample by this sample’s total abundance sum)

absolute abundances are converted into proportions
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w w ? @ ? w taxa with the same abundance in
two samples may represent
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4. Methods

Problem: Data normalization and
compositionality
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 Pearson and Spearman can be severely distorted, because they
consider “absolute” values

* measures based on ratios or log-ratios (KLD, BC) are not affected by
data compositionality, since the ratio between two abundances in the
same sample is not changed by the normalization

Aitchison J (1982) “The Statistical Analysis of Compositional Data.” Journal of the Royal Statistical Society Series B
(Methodological) 44, pp. 139-177.




4. Methods

5’ JM ‘T rw Q’

Adjust null distribution to mitigate the
compositionality bias
* Permutation test: removes correlation, but also any bias due to
compositionality

* Permutation with renormalization: for each pair of taxa, permute their
abundances and then renormalize the matrix (body-site-wise)

raw data normalized data
‘g 1 M\ ey spurious correlation
m I \J ) M[l true |:> between and
“ correlation introduced by

“ Ak b b bl e
» J between b1 sty normalization
| V \” and b3 i "M‘w»ﬁ"\“*""“\w W A adkdl
S e == bootstrap distribution mean Fah
== renormalized permutation distribution mean .
Sathirapong-
sasuti
t 8 J‘ h}k significant o i not significant
1.0 05 0.0 DIS 1_ID 1.0 0.5 0.0 05 1.0
boot boot



4. Methods

Methodology overview

Train Model Predict
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GBLM: Generalized Boosted Linear Model

Simes Method
FDR Correction
Post-merge Filtering

680 taxa

’ Ensemble of Correlation and Similarity Measures
site 2

o Pearson Correlation

o Spearman Correlation

o Kullback-Leibler divergence

o Bray-Curtis Distance



5. Results

Network inferred for HMP 16S phylotypes

* most edges connect phylotypes within the same body area (e.g.
vagina), but some edges link phylotypes across body areas (network
is modular)

Nodes: body-site-specific phylotypes
(e.g. Ruminococcaceae in Stool)
Edges: significant score between
body-site-specific phylotypes

Node color code Edge color code

Anterior nares g
positive

Buccal mucosa
Hard palate

Palatine tonsils

Subgingival plaque
Supragingival plaque

Left retroauricular crease
Right retroauricuar crease

Mid vagina
Posterior fornix
negative




5. Results

HMP 16S Network - composition

Body-site-specific node proportions

Posterior fornix Buccal mucosa

Mid vagina

Right antecubital fossa Subgingival plaque
Palatine tonsils

Right retroauricuar crease Supragingival plague

Vaginal introitus Hard palate

Left retroauricular crease

Anterior nares
Stool

Class-specific node proportions

Lentisphaeria Fusobacteria
Verrucomicrobiae Gammaproteobacteria
Synergistia Betaproteobacteria
Mollicutes

Bacteroidia
Erysipelotrichi
Spriochaetes Clostridia
Flavobacteria Above class-level




5. Results

HMP 16S network — body-site
relationships
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5. Results

HMP 16S network — class relationships
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5. Results

log2(node number)

HMP 16S network analysis

Node degree distributions
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5. Results

HMP 16S network functional analysis

Functional distance

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Phylogenetic and functional distances
between pairs of co—occurring/co—exclusive taxa

Treponema-Prevotella

(supragingival plaque)
Functionally and phylogenetically distinct

organisms co-occurring in the same body site

Fusobacteriaceae-Fusobacteriaceae
(oral sites)

Single functionally diverse clade

co-occupying related body sites

—t
]

1
]
1

7
4
4
4

A 7
-

/ /
A Neisseria-Prevotella ,"
x A (tonsil) /
: Shared metabolic requirements i
A j ! o suggest competition /
A A- !
A Campylobacter-Prevotella

(hard palate)
Complementary metabolic products
suggest cross-feeding

[ | AN
“ * Prevotellaceae-Bacteroides

ﬂ (stool)
Related organisms co-excluding

within the same body site

N\,
N\,

Y
Parabacteroides-Bacteroides
(anterior nares)

Most closely related organisms that
co-occur in the same body site

A m  Co-occurrence
A B Co-exclusion
B Same body site
A A Different body sites
— A AA A A
| | | | |
0.0 0.2 0.4 0.6 0.8

Phylogenetic distance

Fah
Sathirapongsasuti
and Nicola Segata



5. Results

Vaginal sub-network of HMP 16S network

 Raveletal. (2011): 5 vaginal

VAN
community types identified PIEER
, - LA 2
e 4 (I, ”, 1 and V) Of these d0m|natEd by AT\ | Anaerococcus | || Prevotellaceae |
: . T Y
Lactobacillus species = [Bifidopacteriaceas |
1 : =
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of Actinobacteria, Bacteroidetes and B
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other phyla y - —

)
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— . A | Lactobacillaceae |
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DA

Lactobacillus

* exclusion between Prevotellaceae
(Bacteroidetes) and Lactobacillaceae as
well as co-occurrence of anaerobic taxa
(Finegoldia, Dialister, Peptoniphilus,
Prevotellaceae), which are members of ‘_ |Lact@ceae|
community IV B 4 -

ol
O

taxonomic levels shown: genus, family and class

Ravel, J. et al. (2011) “Vaginal microbiome of reproductive-age women”, PNAS, vol. 108, pp. 4680-4687.




5. Results

Stool sub-network of HMP 16S network
=

Veillonella
Akkermansia
Verrucomicrobiaceae
Prevotella

Clostridia Sporobacter
Ruminococcaceae

Bacteroides
Prevotellaceae

A Obese

<7 18D

taxonomic levels shown: genus, family and class

Arumugam et al. (2011): three different gut communities identified

driven by: Prevotella, Bacteroides (both Bacteroidetes) and Ruminococcus
(Firmicutes)

Ruminococcaceae and Bacteroides as well as Prevotellaceae and Bacteroides
exclude each other in the stool sub-network

Arumugam, M., Raes, J. et al. (2011) “Enterotypes of the human gut microbiome”, Nature 473, pp. 174-180.




5. Results

Supragingival plaque sub-network of
HMP 16S network

dental plaque cingiva

Catonella

Selenomonas
Synthrophococcus

- negative relationship between

early colonizers of the tooth
surface (Streptococcaceae) and
intermediate colonizers
(Fusobacterium)

- positive relationships between
late colonizers (Selenomonas,
Tannerella)

Porphyromonas Fusobacterium

taxonomic levels shown: genus

Kolenbrander, P.E. et al. (2010) “Oral multispecies biofilm development and the key role of cell-cell distance”,
Nature Reviews Microbiology 8, pp. 471-480.




6. Conclusions

Conclusions

few cross-body-area relationships: different body areas harbor distinct
microbiota

body sites can be grouped based on cross-links between their
microbiota): oral, skin and vaginal sites form separate clusters, airways
and stool separated from the oral cavity: clusters can be interpreted as
different microbial niches

alternative microbial communities observed in the vagina and the gut
detected

stages of dental plague formation captured

closely related microbes tend to co-occur in body sites with similar
conditions

negative relationships occur between more distantly related microbes

Sathirapongsasuti*, Faust* et al. (2012) “Microbial Co-occurrence Relationships in the Human Microbiome”, PLoS
Computational Biology 8 (7) e1002606.




7. Tool

CoNet — Similarity-based network
inference with multiple measures

Cytoscape main window

B, Cytoscape Desktop (New Session)

B aeaoa @ 8@ @ Byhy

ontrol Panel
("% Network = VizMapper™ | Editor  Filters  CoNet

I

7
7

‘Cooccurrence network inference

CoNet

Compute significant cooccurrence or mutual exclusion between items
(rows) whose presence/absence or abundance was observed repeatedly
(columns) and visualize the result as a network.

Network inference options

Data menu ) ( Preprocessing and filter menu ) (_ Methods menu )

Merge menu menu ) (_ Config menu

(Generate command line call )
GO Settings loading/saving
Demo

Load GDL network

Load

(“Help ) ( About CoNet atalBare] €
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Cooccurrence network inference

CoNet

Compute significant cooccurrence or mutual exclusion between items
(rows) whose presence/absence or abundance was observed repeatedly
(columns) and visualize the result as a network.

~Network inference options

( Data menu ) ( Preprocessing and filter menu ) ( Methods menu )

( Merge menu ) ( Randomization menu ) ( Config menu )

( Generate command line call )
@ (' Settings loading/saving )

rLoad GDL network

( Help ) ( About CoNet )




7. Tool

CoNet — Features

http://systemsbiology.vub.ac.be/conet

runs as Cytoscape plugin or on command line

allows combining several measures, either in a multigraph or
by merging their scores or p-values

supports abundance as well as for presence/absence matrices

implements various randomization and multiple test
correction routines

integrates external network inference packages, e.g. minet
(mutual information based network inference) and apriori
(association rule mining algorithm)

plots score distributions

offers preprocessing, missing value treatment, grouping rows
settings loading/saving

well documented (manual, tutorials, FAQ)
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Association networks and biodiversity




8. Networks and biodiversity

Network topology and impact of species
removal

e |dea: edge number (“connectedness”) in an association network as
predictor for the importance of a species in an ecosystem: removal of
highly connected hub species changes system stronger than removal of
species with few connections (Steele et al.)

* hub species ( = keystone species) and system stability: network robust
against random node removal, but not against targeted (hub) node
removal (Jeong et al.)

o0

removal of the orange
bridging node or the red or
blue hub node disrupts
network much more than
removal of black or green
nodes

Image taken from: Penrod et al. Trends in
Pharmacological Sciences, Vol. 32, pp. 623-630 2011.

Steele et al. (2011) “Marine bacterial, archaeal and protistan association networks reveal ecological linkages”, ISME 5, pp. 1414-1425.
Jeong et al. (2001) “Lethality and centrality in protein networks”, Nature 411, 41-42.




8. Networks and biodiversity

Network topology and impact of species
removal - cascades

 ambiguity: keystone species originally does not
refer to highly connected species in association
networks, but to top predators in food webs
(Paine)

 removal of top predator launches a top-down
cascade (higher abundance of intermediate
predators, lower abundance of their )

* bottom-up cascades: starting from primary
producers or important service providers (e.g.
nitrogen fixation)

* species whose removal causes strong cascading
effects are not necessarily hub species

 need directed networks to identify likely sources of
cascades (as in food webs), but association
networks are usually undirected

(X
Q-

top predator is less
connected than the
intermediate predators,
but its removal will likely
affect the system much
stronger

Paine (1969) “A Note on Trophic Complexity and Community Stability”, The American Naturalist 103, pp. 91-93.




8. Networks and biodiversity

Network topology and impact of species
removal — edge ambiguity

the interpretation of the edges in co-occurrence networks is ambiguous!

ecological relationships niche overlap

predator/parasite (win-loss)

commensalism
(win-neutral)
+0
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8. Networks and biodiversity

Network topology and impact of species
removal — environmental parameters

environmenta
parameter

- integrating environmental parameters (pH, temperature, salinity etc.) in the
network analysis can help to disambiguate edge interpretation

- considering environmental parameters may also pinpoint species that are
sensitive to changes in these parameters (regardless of their number of links
to other species)



8. Networks and biodiversity

Networks as input of community

models

network inference techniques can help to determine interaction strengths
between species from time series data

interaction strengths needed by some community models

community models can predict the outcome of species removal

Input Community model Analysis
9
y =
t= 1 3 4 5 6 73
A t) (b +E 1] J ] Do_ /
B i=1,..N Population 1
—
C N = the number of different taxa Lsim 1 2 3 4 5 6
D x;(t) = the abundance of taxon i at time t
b; = the growth rate of taxon i

a;; = the interaction strength between
taxon i and j (positive or negative)

Time series

B
C
D

Top: identification of unstable and
stable states using stability analysis;
bottom: simulations of community
dynamics with various initial conditions

Image taken from: Faust et al. Nature Review Microbiology, Vol. 10, pp. 538-550 2012.
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Appendix

Bacterial abundances from 16S reads

* raw 16S rRNA reads were processed by Pat Schloss with his mothur
pipeline

* processing steps included sequence trimming (primers and barcodes
removal), filtering (of ambiguous bases, homo-polymers and redundant
seqguences) and chimera removal (with ChimeraSlayer)

* mothur assigned reads to ~730 phylotypes using the Ribosomal
Database Project (RDP) reference 16S rRNA sequences and the RDP
phylogenetic tree

* mothur also assigned reads to ~9,450 OTUs (operational taxonomic
units), by first clustering reads based on alignments and then assigning
a consensus taxonomy to the groups using the RDP phylogenetic tree
and reference sequences

* likely mislabeled samples were detected by Dirk Gevers using a
machine learning approach (Knights, 2010)

Schloss, P. et al. (2009) “Introducing mothur: Open-source, platform-independent, community-supported software for
describing and comparing microbial communities.” Appl. Environ. Microbiol., vol. 75, pp. 7537-7541

Cole, J.R. et al. (2009) “The Ribosomal Database Project: improved alighments and new tools for rRNA analysis”, Nucleic Acid
Research, vol. 37, pp. D141-D145

Knights, R. et al. (2010) “Supervised classification of microbiota mitigates mislabeling errors.” ISME, vol. 5, pp. 570-573




Selection of measures
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| Experiment: Select
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Jaccard similarity heat map
(Ward clustering) based on
edge overlap
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Appendix

Definition of measures

Hellinger

(x and y each sum up to 1) d(x’y)=\/2(\/;i—\/;i)2

Kullback-Leibler d(x,y) = E(xi log(xi) +, log(
Yi

(xand y each sum up to 1)

Logged Euclidean d(x,y) = \/E (log('xi) - 10g()’i))2

Yi
X.

l

Euclidean distance d(x,y) _ \/2 (xi _ yi)z

Bray Curtis .

(Steinhaus is the ZEmm(xi,yi)
) d(x,y)=1-

corresponding E X+ E y.

similarity)

Require pseudo-
counts or
smoothing because

)) log(0) = -Inf

Hellinger distance and
Kullback-Leibler
divergence are
mathematically
related measures.

Bray-Curtis dissimilarity is
computed on row-wise
normalized data (i.e. xand y
each sumupto1)



Appendix

Definition of measures continued

Variance of log-

X. . .
Variance of log-ratios  d(x,y) = var(log(—)) ratios, conceived
Yi
Aitchison proposed a scaling
between 0 and 1, where 1 Require pseudo_
corresponds to maximal d(x,y)=1- e V4xY) counts or smoothing
similarity: because log(0) = -Inf

_ _ For Pearson, vectors x and y
E (xl. - nyi — y) are standardized (subtraction

of mean, division by standard

\/E( i __)2 \/E (y,- —;)2 deviation) and for Spearman,

E ranks are considered, so
6 d2
=1-

Spearman  d(x,y) ( 2 1) =X, — y,(ranks) for either of
these measures.

Pearson d(x,y) =




Appendix

Generalized Boosted linear models (GBLM)

Xipos = Xyps T Eiﬁ it ts. st ss7Vst. s
St

Xy s = target taxon at target site
X = Source taxon at source site

B = coefficients (interaction strengths)

Multiple regression: more than one source taxon may predict the target
taxon’s abundance

Boosting: a form of sparse regression (coefficients with small
contributions are set to zero)

In practice, all source taxa of a body site are considered to predict the
abundance of a target taxon in the same or another body site. Then,
the optimal sub-set of source taxa is selected by boosting (sparsity
enforcement).
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Generalized Boosted linear models (GBLM)

Prefiltering

- only source taxa correlating with target taxon with Spearman p-value
< 0.05 considered (to enforce sparsity and avoid over-fitting)

Scoring

Regression scoring: adjusted R? (AR)
R? = root mean square error between prediction and observation

n-1 n = sample number
p = number of
source taxa with
non-zero coefficient

AR =1-(1-R?)
n-p-1

Cross-validation

- boosting was carried out with three different iteration numbers (50,
100, 150)

- the most accurate (according to AR?) selected among the three

- 10-fold cross-validated and minimum AR? retained as regression score
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ReBoot: Adjust null distribution to mitigate the
compositionality bias

'n\ 'n\ @ @ @ “\_ shuffle selected taxon pair

all —\') .

taxa in

one - \“) pr— [::i> p—
body

site -

renormalize matrix @
:. compute random score for taxon pair

on shuffled, renormalized abundances
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Agreement between data and methods
| |
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