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Zusammenfassung
Humane Ras-Onkogene spielen eine wichtige Rolle bei der Entstehung vieler Krebs-
arten. Die Aufklärung der durch aktivierte Ras-Proteine gesteuerten Signalwege und
deren Einfluss auf die Genexpression ist daher von besonderer Bedeutung.

In der vorliegenden Arbeit wurde ein Microarray-Experiment ausgewertet, mit dem
die Wirkung eines induzierbaren mutierten Ras-Proteins auf die Genexpression in
embryonalen Rattenfibroblasten untersucht wurde. Das Expressionsniveau von 311
Genen wurde über eine Zeitspanne von 8 Tagen zu insgesamt 15 verschiedenen
Zeitpunkten gemessen. Die Messungen erfolgten in den ersten 5 Tagen nach Induktion
des Ras-Proteins, anschliessend für weitere drei Tage nachdem die Induktion beendet
worden war.

Im ersten Teil der Arbeit wurden die Microarraydaten mit verschiedenen Northern
blot und Real-time PCR Experimenten, die zur Verifizierung der Arraydaten anhand
von 10 Genen durchgeführt worden waren, verglichen. Für jedes Experiment wurde im
Vergleich zum Microarray Experiment der Spearman Koeffizient errechnet.
Im zweiten Teil wurden Genexpressions-Vektoren von 82 signifikant differentiell
exprimierten Genen unter Verwendung von hierarchischen (agglomeratives Nesting)
sowie partitionierenden (Kmeans, SOM, PAM) Verfahren geclustert. Das Problem der
Wahl einer angemessenen Clusterzahl wurde mit Hilfe von Clusterindizes angegangen.
Unter Verwendung der verschiedenen Methoden konnten vier Gengruppen identifiziert
werden, die eine deutliche Änderung ihrer Expressionswerte nach Ras-Induktion und
erneut nach Beendigung der Induktion zeigten.

Eines der vier Cluster mit insgesamt 25 Genen, deren Expression in Abhängigkeit
von Ras stimuliert wurde, zeigte ein Expressionsprofil, welches über den Beobachtungs-
zeitraum von 8 Tagen dem Profil des Serum Response Factors (SRF) glich. Ausserdem
enthielt dieses Cluster drei bekannte Zielgene des Transkriptionsregulators SRF. Daher
wurde im dritten Teil der Arbeit untersucht, ob in diesem Cluster weitere potentielle
SRF-Zielgene liegen. Hierfür wurden Up- und Downstream-Bereiche aller Gene dieses
Clusters extrahiert. Im nächsten Schritt wurden konservierte Bereiche durch Align-
ments von Ratten-, Maus- und menschlichen Sequenzen aufgespürt. Innerhalb dieser
Bereiche wurde dann eine Suche nach möglichen SRF-Bindestellen mit Matrizen der
Datenbank T-Reg durchgeführt. Mit dieser Vorgehensweise konnten drei bekannte SRF-
Zielgene (cpg21, PDGF-A, junB) bestätigt und ein neuer Kandidat (MKP-3) vorherge-
sagt werden.
MKP-3 ist Teil einer negativen Rückkoppelungsschleife, die aktiviertes MAPK aus-
schaltet. Seine Regulation ist von besonderem Interesse, da es ein potentieller Tumor-
suppressor ist. Die vorliegende Arbeit deutet darauf hin, dass aktiviertes Ras MKP-3
über SRF hochreguliert.
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Summary
Human Ras oncogenes play an important role during the formation of many cancers.
Therefore, elucidation of signaling pathways downstream of Ras and their influence on
gene expression is of special interest.

The present work analyzes a microarray experiment performed for studying the
effects of inducible oncogenic Ras on gene expression in rat embryonal fibroblasts. The
expression levels of 311 genes were investigated during 8 days with a total of 15 time
points. Measurements were conducted during 5 days after induction of the Ras protein
and for additional three days after abrogating Ras induction.

In the first part of the thesis, microarray-derived expression values were compared to
verification data obtained via Northern blot or real-time PCR analysis for 10 selected
genes. For each experiment a Spearman correlation coefficient was calculated in
comparison with the microarray data.
In the second part, gene expression vectors of 82 significantly differentially expressed
genes were clustered using hierarchical (agglomerative nesting) as well as partitional
methods (kmeans, PAM, SOM). The problem of choosing the right cluster number
was tackled with the help of cluster indices. Using the various methods, 4 clusters
were identified which show a significant alteration in their expression level after Ras
induction and again after cancelling the induction.

One of the four clusters (B) harbouring 25 genes, whose expression is stimulated in
response to Ras, exhibited an expression profile similar to the profile of the transcription
factor serum response factor (SRF) within the 8 days of measurement. In addition,
this cluster was found to harbour three known target genes of SRF. Therefore, this
cluster was analyzed for further potential SRF targets during the third part of the thesis.
For this purpose, regions up- and downstream of the genes belonging to this cluster
were retrieved. As a next step, conserved regions where detected by an alignment of
rat, mouse and human sequences. Within these regions, a search for potential SRF
binding sites was performed using matrices obtained from the database T-Reg. By this
procedure, the three known SRF targets could be confirmed (cpg21, PDGF-A, junB)
and one new target (MKP-3) was predicted.

MKP-3 is part of a negative feedback loop that switches off activated MAPK. Its
regulation is of particular interest, since MKP-3 is a potential tumor suppressor. This
study suggests that MKP-3 is up-regulated upon Ras activation via SRF.
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Abbreviations

AC agglomerative coefficient

bp base pair (1kb = 1000 bp)

CNB conserved non-coding sequence block

DUSP dual specificity phosphatase (alias MKP)

DBTSS DataBase of Transcriptional Start Sites

ERK extra-cellular signal regulated kinase (alias MAPK)

EPD Eukaryotic Promoter Database

FP false positive

FN false negative

ICrel relative information content

IEG immediate early gene

IPTG isopropyl-1-thio-β-D-galactosidase

IR-4 inducible Ras clone 4

Lox Lysyl oxidase

MAPK mitogen-activated protein kinase

MKP MAPK phosphatase

GO gene ontology

PAM partitioning around medoids

PCA principal component analysis

PDGF-A A chain of the platelet derived growth factor

P-ERK phoshporylated (activated) ERK (alias P-MAPK)

PFM position specific frequency matrix

PI3K phosphoinositide-dependent protein kinase

PSCM position specific count matrix

PSSM position specific score matrix

RefSeq NCBI Reference Sequence

PCR polymerase chain reaction

SOM self-organizing map

SRE serum response element
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SRF serum response factor

TCF ternary complex factor

TFBS transcription factor binding site

TSS transcription start site
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1 Introduction

1.1 Biological Background of Ras Signaling

Why are Ras proteins crucial for the development of many cancers? In normal cells,
Ras is transferred from an inactive GDP-bound state to an activated GTP-bound state in
response to growth factor signals. The growth signal is switched off again by GTPase
activating factors, which enhance the intrinsic capability of Ras to hydrolyze GTP. In
human tumors, mutations within the Ras genes result in the generation of oncogenic
Ras proteins, which prevent hydrolysis of GTP by their altered conformation, leading
to a continuous transmission of growth stimulatory signals [CAMPBELL ET AL . 98].
Thus, Ras acts as a molecular switch, which sets the course for proliferation. It does so
by its influence onto various intracellular processes such as protein modification, tran-
scription and translation [CAMPBELL ET AL . 98]. Signal transduction emerging from
Ras proteins does not follow a linear path, but forms a complex network. In the follow-
ing, a small, but well characterised part of this network, called the MAPK-cascade, is
described in detail.

If a growth factor binds to its receptor, the transition of Ras to its active, GTP-bound
state is mediated via adaptor proteins. Then, the signal is passed on through three layers
of kinases, the first being the serine/threonine kinase Raf. Activated MEK, the kinase on
the second level, phosphorylates the third level kinases p42/p44 MAPK (in the following
named MAPK), which in their active state enter the nucleus. The extend of MAPK
accumulation within the nucleus depends on the nature of the stimulus. As Volmat
et al. demonstrated, only a mitogenic stimulus allows long term activation of MAPK
and consequently the transcription of nuclear anchors, which fix MAPK in the nucleus
[VOLMAT ET AL . 01].

Next, the activation of the transcription factor Elk-1 by activated MAPK initiates the
transcription of target genes. Not only Elk-1 but also a variety of other transcription
factors is activated by Ras via additional pathways, notably SRF, ATF2, Jun and NF-κB
[CAMPBELL ET AL . 98].

An important group of Ras target genes are the dual specificity phosphatases
(DUSPs). They play a key role in the anchoring and inactivation of MAPK in the nu-
cleus (DUSP1, DUSP2 [VOLMAT ET AL . 01]) as well as in the dephosphorylation of
MAPK in the cytoplasm (DUSP6, DUSP9 [CAMPS ET AL. 98]) and therefore can work
as tumor suppressors [FURUKAWA ET AL . 03].
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1 Introduction

In the literature, DUSPs often are referred to as MAPK phosphatases (MKPs) because
of their specificity for mitogen-activated kinases. DUSP6 for example is also named
MKP-3, which is the name used throughout this work. DUSP1 and MKP-1 are syn-
onyms as well as DUSP9 and MKP-4, DUSP5 is also known as cpg21. An overview of
different names for a number of DUSPs is given in [CAMPS ET AL. 00].

1.2 Microarray Experiment

During recent years, the influence of Ras oncogenes on gene expression was analyzed
quantitatively by several groups. The first description of a genome-wide expression
profile of Ras-transformed rat fibroblasts as compared to immortalized rat fibroblasts
was published in 2000 [ZUBER ET AL. 00]. For nearly half of the genes shown to be
differential in this cell culture model, differential expression was verified with Northern
blots. In addition, the same group established a cell line derived from the immortalized
rat fibroblasts containing an inducible HRAS (G12V) (IR-4 cell line). After induction of
oncogenic HRAS using IPTG, not only the morphology of IR-4 cells changes from flat
to spindle-like but the cells also acquire the capacity to grow anchorage-independently,
a typical characteristic of transformed cells [SERS ET AL. 02].

In order to study the time course of gene expression in response to oncogenic Ras, 311
genes derived from the initial genome wide expression profiling were analyzed using a
series of customized Ras target specific gene arrays (Tchernitsa&Sers, unpublished).
mRNA from non-induced and induced IR-4 cells was collected after 0, 10 min, 30 min,
60 min, 2 h, 6 h, 12 h, 24 h, 48 h, 72 h, 93 h and 120 h. After 5 days (120 h), the
inducer IPTG was removed from the cell culture medium and mRNA was collected at
three further time points: 144 h, 168 h and 192 h. All RNA samples were subsequently
used for the generation of cDNA and hybridized to the array.

For the generation of the customized Ras-target gene array, a specific oligomer of
70 base pair length was designed for each gene and checked for unwanted homologies
using BLAST. Because mRNA is transcribed into cDNA before usage, the oligomer is
complementary to parts of the probe and can hybridize with it. The process of reverse
transcription of the probe mRNA also serves for labeling, either with a red (Cy5) or
green (Cy3) fluorescent. For each time point, a dye swap design was employed such
that on the first of two arrays the probe taken from non-induced cells was colored red
and the probe from induced cells green whereas on the second array the coloring of
the probes was exchanged. The target oligomers were spotted five times for each gene
on poly-l-lysine treated glass slides, which also contained 20 different house keeping
genes and positive and negative controls provided by a kit (Alien SpotReportTM AlienTM

cDNA Array Validation System).
Then, images were generated with the help of a laser fluorescent scanner (Agilent
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1.3 Image Analysis and Detection of Differentially Expressed Genes

G2565BA) using two wavelengths (570 nm for the green label and 660 nm for the red
one). Several images per microarray were taken with different photomultiplier gains.
The complete microarray experiment was performed by Dr. Oleg Tchernitsa and Tech-
nical Assistants Jana Keil and Anita Geflitter in the Laboratory of Molecular Tumor
Pathology (Charité).

1.3 Image Analysis and Detection of Di�erentially

Expressed Genes

The analysis described in the following section was done by Dr. Ralph-Juergen Kuban
(Laboratory of Functional Genome Analysis, Charité).
First, spot intensities were quantified using Imagene version 3.0. If spots with saturated
intensity were detected during this process, the quantification was repeated using one of
the images with lower photomultiplier gain. The intensity of the local background was
also quantified and subtracted from each spot.
Next, red and green intensities for each microarray pair were adjusted with the help
of an MA-plot. MA-plots visualize a potential bias towards one color in a dye swap
experiment by plotting the logarithmic red versus green ratio (M) dependent on the log-
arithmic mean intensity (A). The regression curve was then calculated with LOWESS
(locally weighted polynomial regression), a nonlinear regression technique commonly
applied to complex data. LOWESS is based on the fit of a low-degree polynomial to
each point in the data set. It requires the specification of a certain percentage of neigh-
bor points, the so-called smoothing parameter, which was set to 20 % in the current
study. The regression polynomial is calculated locally on the neighboring points, which
are weighted according to their proximity to the point in question. Finally, their value
under the local regression function is calculated for all points and returned as regression
curve.

After adjustment of red and green intensities, a two-way ANOVA (analysis of vari-
ance) was performed to determine the significance of differential gene expression. The
application of ANOVA models to microarray analysis was introduced by Kerr et al.
[K ERR ET AL. 00]. They consider a four-way ANOVA model, which takes into account
the influence of the array, dye, variety and gene as well as array-gene and variety-gene
interactions on the (logarithmic) intensity and derive gene expression ratios from their
model.
The two-way approach used here is implemented in the GeneSpringr software ver-
sion 6.1 (Silicon Genetics, Redwood City, CA). P-values were calculated using Stu-
dent’s t-test, assuming equal variance and Gaussian distribution of the data. Then,
with the help of two-way ANOVA, the influence of dye, variety (in this case: time
point) and their interaction on gene expression was estimated and a gene list re-
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1 Introduction

trieved accordingly. As multiple test correction Benjamini-Hochberg was applied
[BENJAMINI & H OCHBERG95]. Finally, a list of 82 genes, regarded as significantly
differentially expressed, was derived (see Appendix, Table A).

The data set on which this work is based consists therefore of a 82 x 15 matrix,
containing ratios for 82 genes over 15 time points.

14



2 Veri�cation of Microarray Data

Because a microarray experiment is error-prone, the verification of results by another
method is essential. In this chapter, the work of several researchers is summarized, who
contributed to the verification of gene expression.

2.1 Methods

Two independent methods were used for verification: Northern blot and real-time PCR.
Both are based on the same cell line that was used for the microarray experiment. The
cells were treated in the same way (IPTG added at time point zero and removed after
120 h) as described in the introduction (section 1.2).

2.1.1 Real-time PCR

Real-time PCR was performed by Birte Müller [MÜLLER 04]. She verified the expres-
sion values of cpg21, Lox and Mob-1 with the house-keeping gene HPRT (hypoxanthin-
phospho-ribosyltransferase) as a control.
To obtain the gene expression ratios, the difference between the limit cycle number of
the control and the gene is calculated. The limit cycle number is defined as the number
of PCR cycles sufficient to reach a given concentration of cDNA. It is assumed that
during PCR the cDNA concentration is doubled with each cycle. Thus, the amount of
cDNA increases exponentially to the base of two. The expression ratio is therefore cal-
culated as two to the power of the limit cycle differencedCT between gene and control:
expression(gene)/expression(control) = 2−dCT .
A large limit cycle number corresponds to a small cDNA concentration. To account for
this inverted relation between cycle number and cDNA concentration, the negative limit
cycle difference is used in the equation.

Expression ratios derived from microarray and real-time PCR cannot be compared
without caution, since the ratio of gene expression in the microarrray experiment is not
calculated against HPRT but against the same gene under non-stimulated conditions.
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2 Verification of Microarray Data

2.1.2 Northern Blots

Northern blot experiments were performed by Jana Keil and Karen Weisshaupt with
GAPDH as a control. Some Northern blots differ from the microarray experiment in
the length of the covered time period, but the time points included in the Northern
blots are the same as in the microarray experiment. In this chapter, the Northern blot
experiments are classified as follows:
A
These Northern blots were done by Jana Keil. They do not include all time points from
the microarray experiment, but the following: 0, 10 min, 30 min, 60 min, 2 h, 6 h, 12 h,
24 h, 48 h and 72 h. The mRNA was taken from a stock different from that used for the
microarray experiment.
B
Northern blots marked with B were performed by Jana Keil and cover the same time
points as the microarray experiment. In addition, the mRNA comes from the same
stock that was used for the microarray experiment.
C
The third Northern blot experiment was performed by Karen Weisshaupt and covers the
following time points: 0, 10 min, 30 min, 60 min, 2 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h.

Northern blots can be semi-quantitatively analyzed, but the limited detection range
of the films might lead to saturation for high concentrations of radioactive material
during autoradiography. Therefore, only a rough comparison of signals derived from the
control gene GAPDH and a specific gene is possible. In addition, the ratio is calculated
differently from the microarray experiment (not against non-stimulated cells but against
GAPDH). Another severe problem is the variation of the control itself shown in Figure
2.1.

2.1.3 Image Quanti�cation

Quanti�cation of Blots with ImageJ
ImageJ is a freely available software specialized on image quantification. Anal-
ysis of blots with ImageJ was performed as proposed on the ImageJ homepage
(http://rsb.info.nih.gov/nih-image/manual/tech.html#analyze).
First, Northern blots were scanned using CanonScan N670U and saved as TIF
files in pixel values. Next, the pixel values were transformed into optical den-
sity (OD) values with the help of a calibration curve. Ideally, this calibration
curve should be derived from known mRNA concentrations. This would allow
calculation of concentrations directly from the pixel values. Because these con-
centrations were not available, a step tablet provided by the ImageJ homepage
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2.1 Methods

Figure 2.1: This figure shows intensity values over time for GAPDH derived from a Northern
blot. For convenience, the data points are connected by a line. GAPDH was used as a control
for the Northern blot experiments.

(http://rsb.info.nih.gov/ij/docs/examples/calibration/) was used to obtain a number of
pixel values with known OD values. The calibration curve was then derived by fitting a
Rodbard function to these known OD values.

In the next step, the background was subtracted and the OD for the lanes quantified.
For this, a box was specified such that the area of quantification was the same for all
lanes. The intensity calculated for each lane is the sum of the OD values over the chosen
area.

Quanti�cation of Blots with a Densitometer
As a control, the quantification was repeated with the GS-670 Imaging Densitometer for
clusterin and Fra-1. Northern blots were scanned with the densitometer and analyzed
with the accompanying software molecular analyst. The resulting intensity values were
compared with those obtained from ImageJ.

2.1.4 Visualization and Similarity

Gene expression similarity was visualized with the freely available statistical package
R (http://www.r-project.org). The similarity of two gene vectors x and y was assessed
by calculating the Spearman correlation coefficientrsp, which is defined as:
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2 Verification of Microarray Data

rsp = 1− 6∑d2
i

(n2−1)n
(2.1)

with di denoting the rank differences between two elementsxi andyi of the gene ex-
pression vectors to be compared and n the number of elements in these vectors.
Because the Spearman correlation coefficient compares the ranks (the order of the val-
ues) instead of the values themselves, it is less affected by different scales.

P-values associated with the Spearman coefficients state whether the hypothesis of a
slope of zero has to be accepted (no linear relationship between the expression values
of two genes) or rejected (linear relationship) for a given level of significance. If for
example the level of significanceα is set to 0.05, a correlation with an associated p-value
larger than 0.05 is not regarded as significant.

2.2 Results

In Table 2.1 the Spearman correlation coefficients of Northern blot and real-time
PCR data to the microarray data are given. P-values associated with the Spearman
coefficients are shown in parentheses.

Gene Northern A Northern B Northern C Real-time
PCR

cpg21 0.71 (0.026) 0.77 (0.001) - 0.63 (0.03)
Lox 0.47 (0.17) 0.59 (0.024) 0.47 (0.14) 0.43 (0.17)
Lox-related - - 0.66 (0.03) -
MKP1 - - 0.39 (0.23) -
MKP3 - - 0.63 (0.042) -
Mob-1 0.47 (0.17) 0.8 (0.0006) - 0.77 (0.005)
thrombospondin-
1

- - 0.18 (0.59) -

Timp2 (mRNA1) - 0.66 (0.0086) 0.55 (0.084) -
Timp2 (mRNA2) - 0.72 (0.0036) -0.27 (0.42) -
Tsc36 - - 0.72 (0.016) -

Table 2.1: Data from Northern blot experiments A-C and from the real-time PCR exper-
iment are compared to those of the microarray experiment with the help of
the Spearman correlation coefficient. The p-value for the correlation is given
in parentheses. For Northern blots covering a shorter time period than the
microarray experiment, time points not included in the Northern blot were
omitted from the analysis.
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2.2 Results

If the time courses of the genes are plotted together (Figures 2.2-2.6), it can be seen
that for Lox (Figure 2.2), Mob-1, MKP1 (both Figure 2.3) and thrombospondin-1 (Fig-
ure 2.4) the curve derived from the microarray data is similar to the others but shifted
to the right along the time axis, resulting in low correlation coefficients. The expression
vectors were standardized as described in section 3.1.2 to display gene vectors in one
plot. This procedure does not affect the Spearman correlation coefficient as it does not
change the ranks.

In the table below, the Spearman correlation coefficients for intensity values obtained
from ImageJ and the densitometer are compared.

Gene Spearman correlation
Fra-1 0.69 (0.006)
Clusterin 0.98 (0)

In average Spearman correlation for both methods is 0.84. Thus, intensity values
retrieved by using ImageJ are comparable to those obtained by a professional densito-
meter.

Because of its relevance for chapter 4, the similarity between expression values of
SRF obtained from a Northern blot (done by Jana Keil) and junB (microarray) was as-
sessed (Figure 2.7). The Spearman correlation coefficient of both gene vectors amounts
to 0.69 (p-value = 0.006).
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2 Verification of Microarray Data

Figure 2.2: The standardized expression vectors derived from different experiments are plotted
together over time. Data points are connected by a line for better comparison. The colors
encode the different experiments: black = microarray, red = Northern A, blue = Northern B,
cyan = Northern C, green = real-time PCR.
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2.2 Results

Figure 2.3: The standardized expression vectors derived from different experiments are plotted
together over time. Data points are connected by a line for better comparison. The colors
encode the different experiments. Mob1: black = microarray, red = Northern A, blue = Northern
B, green = real-time PCR, MKP1: black = microarray, red = Northern C.
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2 Verification of Microarray Data

Figure 2.4: The standardized expression vectors derived from different experiments are plotted
together over time. Data points are connected by a line for better comparison. The colors encode
the different experiments: black = microarray, red = Northern C.
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2.2 Results

Figure 2.5: The standardized expression vectors derived from different experiments are plotted
together over time. Data points are connected by a line for better comparison. The colors
encode the different experiments. Tsc36: black = microarray, red = Northern C, Timp2: black =
microarray, red = Northern B (1. mRNA), blue = Northern B (2. mRNA), green = Northern C
(1. mRNA), cyan = Northern C (2. mRNA).
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2 Verification of Microarray Data

Figure 2.6: The standardized expression vectors derived from different experiments are plotted
together over time. Data points are connected by a line for better comparison. The colors encode
the different experiments: black = microarray, red = Northern C.

Figure 2.7: Standardized gene expression vectors of junB (red) and SRF (black) are plotted
together. The data points are connected by a line for better comparison.
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3 Cluster Analysis

Cluster analysis consists of several methods that find groups of similar data points in a
data set. Groups should be defined such that data points inside a group or cluster are
more similar to each other than to the data points outside of the group. Because cluster
analysis belongs to the unsupervised data mining techniques, it requires no prior know-
ledge of categories in the data set and therefore is often used in microarray analysis.
The basic idea of its application to microarray data is that co-expressed genes can be
detected by calculating the similarity of their expression vectors and ordering the genes
accordingly [EISEN ET AL. 98]. In this study, two different clustering approaches have
been applied to the data set: hierarchical and partitional clustering. In addition, several
methods have been used to determine the optimal cluster number k.

3.1 Materials and Methods

3.1.1 Software

The calculations described in this section were performed with R. For SOM clustering,
GeneCluster 2.0 from the Cancer Genomics Group at the Whitehead/MIT Center for
Genome Research was used.

3.1.2 Data Set

The data set, also called the gene expression matrix, consists of 82 genes whose expres-
sion ratios were measured at 15 time points. Therefore, one row of the expression matrix
represents an expression vector for one gene. In the context of partitional clustering, a
gene vector is also referred to as a data point in a 15 dimensional space.

Mean Expression Ratios
For each gene, hybridization of its cDNA with the target was performed on five different
spots. Therefore, the expression ratios represent the average out of five measurements.
Because the deviations from the mean expression ratios were small (negative deviation,
averaged over the 82 genes: 0.09, positive deviation, averaged over the 82 genes: 0.11),
only the mean expression ratios were taken into account for cluster analysis.
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Logarithm
Often, the logarithm to base two is applied to microarray data to give up- and down-
regulated expression ratios equal weight. In this work, no logarithm was taken prior to
standardization, but its effect on clustering results was tested.

Standardization
The aim of cluster analysis is to find groups of co-expressed genes. Thus, the interest
is focused on similar behavior of genes over time rather than on the magnitude of gene
expression. If their vectors point into the same direction, the genes are co-expressed.
Therefore, the lengths of gene vectors (magnitude of expression) can be adjusted with-
out loss of important information, if the proportion of vector entries (determining the
direction) is preserved. This is done by standardization of the data. In a procedure com-
monly applied, the mean of the corresponding gene expression vector is subtracted from
each entry in the matrix and each entry is divided by the standard deviation of the gene
expression vector. The resulting vector has mean zero and standard deviation one.

3.1.3 Positive and Negative Controls

To assess and compare the power of different clustering techniques, positive and nega-
tive controls are necessary. As a positive control, a data set derived fromS. cerevisiae
[CHO ET AL. 98] has been chosen, which consists of 416 genes manually separated in
five clusters according to different phases of the cell cycle (early G1, late G1, G2, S
and M). This data set has been described as suitable positive control by Futschik and
Kasabov [FUTSCHIK & K ASABOV 02]. The positive control was also standardized.

For generation of a negative control, each row of the gene expression matrix was
shuffled such that correlations of gene vectors were destroyed. This is demonstrated
by the histogram of the 82 x 82 correlations of gene vectors, which shows a Gaussian
distribution centered on zero (see Figure 3.13).

3.1.4 Distance Measures

Every clustering technique requires a distance measure or metric. If a distance measure
has been defined, the (symmetrical) dissimilarity matrix can be calculated whose entries
correspond to the distance between two gene vectors x and y. Euclidean metric is widely
used as a distance measure:

d(x,y) =

√
n

∑
i=1

(xi −yi)2 (3.1)

A variety of other distance measures is mentioned in the literature. Because the focus
of this project was not on the optimization of parameters but on the exploration of a
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3.1 Materials and Methods

given data set, Euclidean as the most popular metric has been chosen throughout this
chapter. As part of their analysis of microarrays from serum stimulated fibroblasts,
Herzel and colleagues tested the influence of different metrics on the clustering result
and found only minor differences [HERZEL ET AL. 02]. They conclude that the choice
of a certain metric is less important for clustering results.

3.1.5 Hierarchical Clustering and Heat Map

In hierarchical clustering a hierarchy of gene clusters is constructed from the dissim-
ilarity matrix such that starting from a single cluster containing all genes the cluster
number increases until each cluster consists of one gene. This results in a tree with
the root (whole gene set) at the top and the leaves (single genes) at the bottom, where
the branch height reflects the distance between clusters. Such a tree is also called a
dendrogram [EISEN ET AL. 98].

There are two approaches for the construction of a dendrogram: one can either start
from single genes and join them step by step until finally all genes are assembled in
one cluster (bottom up or agglomerative strategy) or one starts from the whole gene set,
splitting it in smaller and smaller clusters until the single gene level has been reached
(top down strategy).

Hierarchical clustering methods can be classified according to their definition of the
cluster distance (see for example [AMARATUNGA & CABRERA 04]):

1. The cluster distance can be defined as the largest distance between two data points
in cluster A and B (complete linkage).

2. It can also be defined as the shortest distance between two members of cluster A
and B (single linkage).

3. The average distance of all pairs of data points in cluster A and B can be used as
cluster distance (average linkage).

There are additional definitions (Ward’s clustering, centroid clustering), which are not
considered in this work.

The R package cluster provides the function agnes (agglomerative nesting) for hier-
archical clustering. As the name suggests, agnes follows the bottom up approach and
allows the use of the three cluster distance definitions mentioned above. The cluster
package is available at CRAN (http://cran.r-project.org/).

To assess the quality of the hierarchical clustering, the agglomerative coefficient
(AC), which was introduced by Kaufman and Rousseeuw, is implemented in agnes. For
each data point i, a quality measure ac(i) is specified as the ratio between the distance of i
and the first cluster it joins and the distance of the cluster containing i and the last cluster
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3 Cluster Analysis

it joins. The quality for the overall clustering is then defined as:AC= 1
n ∑n

i=1[1−ac(i)],
with n as the number of data points. If AC approaches its maximum of 1, there is a high
amount of clustering structure in the dendrogram.

In a heat map, the rows of the gene expression matrix are rearranged according
to a given dendrogram that is displayed at the left side of the matrix. This visu-
alization technique was first applied to microarray analysis by Eisen and colleagues
[EISEN ET AL. 98]. Expression values are encoded by a range of colors. Because sim-
ilar gene vectors are placed next to each other and numbers are replaced by colors, the
heat map facilitates the detection of gene groups. This data representation technique is
available in R with the function heatmap.

3.1.6 PCA and Partitional Clustering

The 82 x 15 gene expression matrix is a multidimensional data set consisting of 82
data points in a 15 dimensional space. Obviously, a dimension reduction technique has
to be used for the visualization of clustering of the data points. Principal component
analysis (PCA) is the classical method for dimension reduction and commonly applied
to microarray data.

In PCA, first the underlying principal components of the data set are identified. In a
second step, the projection of the data set onto the subspace spanned by the principal
components is performed. In order to find the principal components, a transformation
matrix representing them is searched that maximizes the variance of the data matrix
X. It can be proven that the eigenvectors of the correlation matrix of X meet this
requirement. Therefore, the transformation matrix is composed of the eigenvectors.
The eigenvectors associated with the largest eigenvalues explain most part of the
variance in the data set and should be chosen for the projection. For this choice,
a barplot of the eigenvalues, also called a Scree plot, is helpful. Projection is then
performed by multiplying the chosen eigenvectors with the data matrix.
With this visualization method at hand, partitional clustering methods can be applied.

Partitional clustering methods are based on the iterative assignment of data points to a
specified number of cluster centers. The assignment step is repeated until an optimum
has been reached or a specified number of iterations has been executed. The definition
of the cluster center and the updating step can differ, but for all these methods it is
necessary to specify the cluster number k.

In this work, out of the large number of partitional cluster methods available three
widely used algorithms have been chosen: kmeans, partitioning around medoids (PAM)
and self-organizing maps (SOM). Kmeans and PAM are quite similar, whereas SOM is
based on a different approach and therefore provides a good control.
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3.1 Materials and Methods

An overview of the features of these algorithms is given in Table 3.1 below.

Algorithm Kmeans PAM SOM

authors Mac-Queen, 1967 Kaufman and
Rousseeuw, 1990

Teuvo Kohonen,
1995

parameters -k
-number of
iterations
-metric

-k
-number of
iterations
-metric

-grid size
(m x n = k)
-number of
iterations
-initialization
of weight vectors
-initial radius of
neighborhood
-update of radius
size
-initial learning rate
-update of learning
rate

cluster center centroid
(mean of all cluster
members)

medoid
(central data point)

winning node

initialization k data points
randomly chosen as
centroids (R imple-
mentation)

k data points ran-
domly chosen as
medoids

random numbers or
k data points
randomly chosen
as weights for the
nodes
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Algorithm Kmeans PAM SOM
iteration step -calculation of new

centroids as the
mean of distances
of cluster members
to current centroids
-assignment of data
points to nearest
centroid

-calculation of
cluster cost for
all data points
-calculation of
cluster cost for
all data points after
swapping each data
point with its
medoid
-new medoid: data
point which reduces
cluster cost most

for each randomly
chosen input data
point:
-identification of
winning node
(node with weight
vector most similar
to input vector)
-adjustment of
weight vector of
winning node to
input vector accor-
ding to learning rate
-adjustment of
weight vectors of
neighboring nodes
either in a distance-
dependent or all-
or-nothing manner

termination change of centroids
below threshold or
given number of it-
erations completed

change of cluster
cost below threshold
or given number of
iterations completed

given number of
iterations completed

advantages fast (linear order) less sensitive to
outliers than
kmeans

-both robust and
accurate
-well suited for
large data sets

disadvantages -sensitive to
outliers
-possibly different
results on re-run

-time consuming for
larger data sets

-large number of
parameters to
specify
-possibly different
results on re-run

Table 3.1: The information on kmeans and PAM was taken from
[A MARATUNGA & CABRERA 04], SOM and its application to microar-
rays is described in [TAMAYO ET AL . 99].
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3.1.7 Cluster Validation

Partitional clustering methods require the specification of the cluster number k. This
parameter can be determined by several strategies:

Data Visualization
Careful inspection of the heat map gives a first insight into similar behavior of genes.
Also, the distribution of branch heights in the dendrogram might point to a certain clus-
ter number.

Quality of Clustering
Another approach for determining k is the assessment of clustering quality in order
to find an optimum for a certain cluster number. A variety of quality measures has
been introduced, from which the Davis-Bouldin index, Dunn’s index and the silhouette
index have been chosen. In the work published by Bolshakova et al. the application of
all three indices to microarray data is described [BOLSHAKOVA & A ZUAJE 03]. The
Davis-Bouldin index was calculated as given in [GÜNTER& B UNKE 02].

Davis-Bouldin index
First, the similarity between two clusters A and B is defined:

d(A,B) =
σA +σB

d(cA,cB)
(3.2)

whith cA andcB denoting the cluster centers of clusters A and B, whereasσA andσB are
defined as the average distances of cluster members in cluster A and B to their centers.
Then, Davis-Bouldin index is given as follows:

DB =
1
k

k

∑
A=1

max
B=1..k,B6=A

d(A,B) (3.3)

For a good clustering (large distances between cluster centers) DB should approach its
minimum (zero).

Dunn’s index
Dunn’s index is defined as:

Dunn=
dmin

dmax
(3.4)

wheredmin is the shortest distance between a pair of data points in two different clusters
anddmaxdenotes the largest distance between two data points in one cluster. For a good
clustering,dmin should be much larger thandmax. Therefore, the larger Dunn’s index
the better the quality of the clustering.
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Silhouette index
The silhouette index was introduced by Kaufman and Rousseeuw. For a single data
point it is given by:

sil(i) =
b(i)−a(i)

max{a(i),b(i)}
(3.5)

whereb(i) denotes the average distance of a data point i to all data points in the nearest
neighbor cluster, whereasa(i) describes the average distance of data point i to all data
points in the same cluster. For a good clusteringb(i) is much larger thana(i) and
sil(i) approaches its maximum of one. The silhouette index for the overall clustering is
defined as the average silhouette index over all data points.

Variability of Cluster Assignment
It is desirable to assess the variability of cluster memberships to know how reliable clus-
ters are. Pollard and van der Laan propose the application of nonparametric bootstrap
for this task [POLLARD & VAN DER LAAN 05].
The basic idea of nonparametric bootstrap is to simulate bootstrap data sets by drawing
with replacement from the original data set and to calculate the distribution of the pa-
rameter in question over the artificial data sets. As it is nonparametric, no assumptions
about the distribution are made.

In case of cluster memberships the distribution of the label vectorθ is of interest.
The label vector describes an assignment of genes to clusters, so the vector may consist
of colors or numbers from 1 to k. Then, an observed clustering result (a labeling) is
defined asθI = S(XI ), where I is the sample size,XI is the observed gene expression
matrix and S is a certain rule applied to the data matrix, that is a cluster method.θ and
X, the true cluster result derived from the true data set, are not known (notation follows
[POLLARD & VAN DER LAAN 05]).

Now, the re-sampling vector is generated by drawing with replacement from the num-
ber of columns of X. As Efron pointed out ([EFRON 92]), this results in a multinomial
distribution of re-sampling vectors where the probability for the re-sampling vector that
reproduces the original sample is higher than the probability for any other re-sampling
vector. The columns of the data matrix are rearranged according to the re-sampling
vector and thus, the new bootstrap sample is obtained.

For each bootstrap data setX∗
I , the labeling vectorθ∗I is calculated by reassigning the

genes to the medoid that is now closest to them. The bootplot function developed by
Pollard et al. plots each gene as a bar, colored according to the cluster membership of the
gene. Thus, if a gene had been assigned to a red cluster in half of the bootstrap samples
and to a green one in the other half, its bar would be colored half red and half green.
The number of times a gene appears in a given cluster is called reappearance proportion
by the authors. The authors recommend a number of 1000 bootstrap samples. They also
point out that calculating bootstrap memberships is a form of fuzzy clustering.
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3.2 Results

Figure 3.1: Raw data set: The expression ratios of 82 genes are shown over 15 time points.
Each gene is repesented by a line connecting the time points. The large single peak belongs to
MMP10, whereas the vector with the two large peaks represents Mob1.

3.2 Results

3.2.1 Data Set

The raw data set is dominated by the expression of Mob1 and MMP10 (see Figure 3.1).
The Mob1 expression peak at 144 h represents the highest up-regulation (about 7 fold)
observed in the data set. Fibronectin was the gene most strongly down-regulated (about
10 fold).

In the standardized data set (Figures 3.2 and 3.3), two groups of genes can be re-
cognized: one that is up-regulated between 12 and 144 h and another one that is down-
regulated in the same period. Interestingly, there are two sudden changes. The first
change is visible between 6 and 12 h, the second between 144 and 168 h.

3.2.2 Hierarchical Clustering

Agglomerative clustering with average linkage was used as hierarchical clustering tech-
nique. Choosing another linkage method leads to changes in the overall structure of the
dendrogram. But in the heat map (see Figure 3.4) the same four gene groups are visible,
although different linkage methods were used.
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Figure 3.2: Standardized data set: The expression ratios were standardized as described in the
text. For the 82 genes, the time-dependent expression ratios, connected by a line, are shown.
The two changes between 6 to 12 h and 144 to 168 h are indicated by arrows.

Figure 3.3: Standardized data set: Here, the expression values of the 82 genes are not shown
on the time scale. Instead, each of the 15 time points is displayed together with its expression
ratios, which are connected by a line. Thus, the first 6 expression ratios of the genes are more
clearly visible than in Figure 3.2.
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These four groups can be described as follows:

1. The first large group contains genes that are down-regulated from 0 to 6 h, than
up-regulated and again down-regulated after 144 h, that is 24 h after IPTG removal
(group B).

2. The second large group shows the opposite behavior: its genes are up-regulated
from 0 to 6 h, than down-regulated and again up-regulated after IPTG removal
(group A).

3. There is also a small group of genes that peaks at 12 h and is down-regulated after
IPTG removal (group D).

4. The last group is down-regulated from 0 to 6 h and stays up-regulated after this
time point (group C).

The table below gives ACs for the three linkage methods (positive and negative con-
trol clustered using average linkage).

Method Average Complete Single Negative control Positive control
AC 0.74 0.76 0.63 0.37 0.7

The AC points to a detectable structure in the data set. The comparatively high AC
for the negative control can be explained by the fact that for each gene the expression
values at given time points are swapped, but not altered. Thus, even in the shuffled data
set there is some structure present: the genes which are in average up-regulated and
those in average down-regulated.

3.2.3 PCA

The first and the second principal component together explain 77.3 % of the variance in
the data set. In addition, there is a sharp decline after the first two eigenvalues visible
in the Scree plot (see Figure 3.5). Therefore, only the first two components are used for
the analysis.

The genes are mainly separated according to their expression values between 6 and
144 h. Genes on the right side of the biplot (see Figure 3.6) are up-regulated in this time
period, those on the left side down-regulated.
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Figure 3.4: Here, the heat map resulting from average linkage is shown. On the left side of
the gene expression matrix, the dendrogram is displayed. The expression ratios are encoded by
colors ranging from blue (down-regulated) to orange (up-regulated). On the right side, a rough
assignment of the genes to clusters A-D is shown.
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3.2 Results

Figure 3.5: Screeplot of the eigenvalues. A sharp decline is visible after the second eigenvalue.

3.2.4 Partitional Clustering

All three cluster procedures were performed with k equals 4 and the Euclidean metric.
The issue of choosing k will be discussed in depth in the next section. SOM was run
with the default values given by the authors of GeneCluster:

Parameter Value Explanation
grid size 2 x 2 defines the shape of the SOM
neighborhood bubble sharp (all-or nothing) decline

of node vector adjustments
around the winning node

number of iterations 50,000
initial radius of neighborhood 5 the radius covers

the nodes whose weight
vectors are adjusted
during the update step

initial learning rate 0.1 adjustment of weight vectors
of neighbor nodes

final radius of neighborhood 0.5 radius of neighborhood
decreases in each step

final learning rate 0.005 learning rate decreases in
each step

initialization of node weights random vectors
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The output of the clustering procedures, the label vector, was used to color the genes
in the biplot according to their cluster memberships. Such a coloring of the 82 genes
is shown in Figure 3.6. It is of note that the blue cluster in Figure 3.6 corresponds
to the genes with a peak at 12 h (group D), whereas the black cluster represents the
genes mainly down-regulated (group A) and the green cluster those mainly up-regulated
(group B). The red cluster contains those genes which are up-regulated but not down-
regulated upon IPTG-removal (cluster C).

Figure 3.6: Data points representing the 82 genes are plotted into the space spanned by the first
and second principal component. The points are colored according to the label vector resulting
from PAM clustering.

If the label vectors resulting from the three algorithms are compared, it can be seen
that they assign the genes to the same clusters (only kmeans leads to a deviating label
vector for some runs). Therefore, the clusters identified can be regarded as stable.
The profiles of the four clusters identified are given in Figure 3.7. They are displayed
together using different colors in Figure 3.8.
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3.2 Results

Gene lists of the clusters together with their gene ontology (GO) terms can be found in
the Appendix (Tables B.1-B.4).

Figure 3.7: Four clusteres were identified in the data set using kmeans, PAM and SOM. Here,
the time-dependent expression ratios of the genes belonging to one cluster are displayed for
clusters A-D. For convenience, these values are connected by a line.

3.2.5 Controls

PAM was used to cluster the controls, as it is the most reliable of the three cluster
algorithms. Again, k was set to four.

To check whether taking the logarithm prior to standardization would affect the re-
sults, the logarithmic data set was standardized and clustered. Taking the logarithm did
not change the partitioning vector for the given cluster number.

Clustering was also done on the positive (with k set to five) and the negative control.
Figure 3.9 displays the 416 genes of the positive control in a biplot. Their cluster
membership according to the label vector generated by PAM is encoded by five
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Figure 3.8: Gene expression vectors of the data set colored according to their cluster member-
ships as calculated by PAM. Blue corresponds to cluster A, cyan to cluster B, magenta to cluster
C and green to cluster D.
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different colors. It can be seen that the red and the blue cluster overlap.
If the time course of each gene in the positive control is colored according to the
cluster membership assigned manually (Figure 3.10) and according to the label vector
generated by PAM (Figure 3.11) a difference can be seen especially for those genes
peaking between 0 and 50 h. However, the profiles of the clusters identified by PAM
are similar to those found by manual assignment.
The clustering of the negative control is shown in Figure 3.12. It can be seen that
a certain structure is present that reflects overall up- or down-regulation of a gene.
Figure 3.13 shows that correlations of gene vectors near to zero are most frequent in
the shuffled data set.

Figure 3.9: The 416 gene vectors forming the positive control are displayed as data points in a
biplot and are colored according to their cluster membership as calculated by PAM. It is of note
that the red and the blue cluster overlap.
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Figure 3.10: Gene expression vectors of the positive control colored according to manually
assigned clusters.

Figure 3.11: Gene expression vectors of the positive control colored according to the label
vector generated by PAM.
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Figure 3.12: The row-wise shuffled gene expression matrix was used as negative control. Here,
the shuffled gene vectors are shown in a biplot and colored according to the label vector gener-
ated by PAM.
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Figure 3.13: Here, a histogram of Pearson correlations of gene expression vectors from the
shuffled data set is shown. The bar at a correlation coefficient= 1 represents the diagonal of the
correlation matrix.

Another question was the influence of the first 6 time points on the cluster result. In
chapter 2 it was observed that for some genes (Lox, MKP1, Mob-1, thrombospondin-1)
expression values from the microarray experiment are shifted in comparison to values
derived from Northern blots and real-time PCR. Therefore, it is of interest whether
skipping the first 6 time points (0, 10 min, 30 min, 60 min, 2 h, 6 h) affects cluster
results.

Without the first 6 time points, the blue (cluster A) and the magenta cluster (cluster
C) become poorly separable (Figure 3.14). If the first 6 time points are replaced by their
mean and clustering is repeated, the result is comparable to the one obtained by skipping
the first 6 values (see Figure 3.15). Thus, the mean of the first six expression ratios does
not give additional information for cluster separation in the modified data set.
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Figure 3.14: Gene expression vectors are colored according to cluster memberships that were
calculated by skipping the first 6 time points.

Figure 3.15: Gene expression vectors are colored according to cluster memberships that were
calculated by replacing the first 6 time points with their mean.
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3.2.6 Choosing k

Visualization
All three heat maps show the same four gene groups. The dendrogram derived from the
dissimilarity matrix using average linkage has two prominent branches, pointing to a
cluster number two. The branch heights of the other dendrograms are evenly distributed
and therefore less easy to interpret (data not shown).

Quality of Clustering
For three indices (Davis-Bouldin, Dunn’s index and silhouette index), the quality of
clustering was calculated for k in a range between 2 and 80 (see Figure 3.16).

It can bee seen that Davis-Bouldin and Dunn’ index are biased, because for the ran-
dom data set cluster quality increases with cluster number k (see Figure 3.17). There-
fore, only the values for k between 2 and 20 were further investigated. A larger cluster
number is not regarded as biologically meaningful for this small gene set. In the table
below, the k indicated as optimal by the cluster indices is given for a range of k between
2 and 20. The values of the indices for the optimal k are added in parentheses.

Index Davis-Bouldin Dunn’s Silhouette
optimal k 2 (0.087) 2 (0.53) 2 (0.52)

If the indices are applied to the positive control in the same range, they fail to detect
5 clusters as the optimum (see Figure 3.19). Nevertheless, the values of all three indices
decrease abruptly for k≥ 5. Interestingly, the data set also shows a decline of cluster
quality for k larger 5 (Figure 3.18). This points to a cluster number not higher than 5,
which fits well the pattern seen in the heat map.

Bootstrap
The bootplot for a cluster number of four reveals well defined clusters with high average
cluster memberships (Figure 3.20). It is of note that some clusters are better defined than
others, for example cluster number zero has a higher average cluster membership than
cluster number 1. Thus, the average cluster number reflects the quality of each cluster.

The question arises whether the average cluster membership can be used for the op-
timization of k. To address this question, the cluster memberships are averaged over all
clusters. Then, this average membership index is calculated over a range of k by using
1000 bootstrap data sets for each k. As this is computationally very intensive, the range
for k was restricted from 2 to 20. The average membership index also points to a cluster
number not larger than 5 (see Figure 3.21).
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Figure 3.16: The values of the three indices Davis-Bouldin, Dunn’s and silhouette for a k rang-
ing from 2 to 80 are shown (values connected by a line). Davis-Bouldin and Dunn’s index point
to an optimum of 80 clusters in the data set.
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Figure 3.17: The values of the three indices Davis-Bouldin, Dunn’s and silhouette are given for
the negative control. As in Figure 3.16, Davis-Bouldin and Dunn’s index point to an optimum
of 80 clusters. The values of the indices for k from 2 to 80 are connected by a line.
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Figure 3.18: The values for the three indices Davis-Bouldin, Dunn’s and silhouette are given
for the data set for k ranging from 2 to 20.
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Figure 3.19: The values of Davis-Bouldin, Dunn’s and silhouette are displayed for the positive
control for k ranging from 2 to 20.
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Figure 3.20: Bootplot of the cluster memberships for k equals 4. Each bar represents one gene
and is colored according to the clusters this gene belongs to. The reappearance proportion refers
to the frequency a gene appeared in the same cluster in the simulated data sets. Number zero
corresponds to cluster A, one to cluster C, two to cluster B and three to cluster D.
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Figure 3.21: The average cluster membership values are plotted dependent on k with k ranging
from 2 to 20. For convenience, they are connected by a line.
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3.3 Discussion

Four clusters have been identified in the data set using a variety of cluster methods. It
has to be noted that the ratios of the gene expression matrix are rather weak, but gene
expression vectors correlate well with vectors derived from verification experiments.

Comparison with other Microarray Experiments
In the following, the data set under investigation is compared with three data sets de-
rived from similar microarray experiments.
Iyer and colleagues measured 517 differentially regulated genes in serum stimu-
lated human fibroblasts over a time span of 24 h and separated them in 10 clusters
[I YER ET AL. 99]. The authors report the down-regulation of MKP-1 within 6 hours
and, more interestingly, a down-regulation, followed by an up-regulation after 6 h for
junB. In addition, Cox2 is found to be up-regulated after 16 h. Their findings agree well
with the data derived from the current experiment.
The experiment by Tullai et al. shows up-regulation of MKP-3, cpg21 and junB in hu-
man glioblastoma cells stimulated with PDGF [TULLAI ET AL . 04]. In contrast to the
results of the microarray experiment presented here, MKP-1 was found to be highly
up-regulated.
Another microarray study, recently performed on normal versus Ras-transformed em-
bryonic mouse fibroblasts, confirms down-regulation of thrombospondin-1 and Lox in
the transformed cell line [VASSEUR ET AL. 03].

Problematic Aspects of Cluster Analysis
A severe problem is the pre-selection of genes according to their significance. This
rules out all weakly regulated genes. Thus, any cluster method is bound to find at least
two clusters of regulated genes: up- and down-regulated genes. However, the peak
at 12 h seen in cluster D is hard to explain by pre-selection, since removing weakly
regulated genes does not cause the formation of peaks among highly regulated genes.
Thus, the four clusters identified do not only represent the result of a pre-selection.

As Figures 3.11 and 3.10 show, there are differences between the clusters found by
PAM and those derived manually for the positive control. In Figure 3.10 it can be seen
that manually assigned groups of gene expression vectors overlap. This demonstrates
one of the limits of the cluster methods used: they fail to detect the correct clusters if
these overlap.

Another shortcoming of the cluster methods applied in this section is the assignment
of genes to only one cluster. This might not reflect the biological situation, where genes
can be regulated by more than one pathway. In contrast to kmeans, fuzzy c-means
assigns to a gene not an integer (zero/one) but a percentage as membership value for
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a given cluster, thus allowing a gene to be a member of several clusters. The benefits
of fuzzy c-means for the analysis of microarray data have been described recently
([FUTSCHIK & K ASABOV 02]). Due to time constraints, fuzzy c-means was not applied
to the data set.

When using the cluster quality indices on the random data set, it is striking that
Dunn’s index and Davis-Bouldin index are biased by the cluster number k. Both cluster
indices are based on the ratio of cluster variance and cluster center distances. In the
case of Davis-Bouldin, cluster variance is defined as the average of cluster member
distances to the cluster center and appears in the nominator. For Dunn’s index, the
cluster variance is the largest distance between two members of the same cluster and
stands in the denominator. With increasing k, cluster variance approximates zero,
whereas cluster distance also increases. This means that Davis-Bouldin approaches
zero (cluster distance in the denominator) whereas Dunn’s increases to infinity (cluster
distance in the nominator).
Therefore, both indices reach their optimum when most clusters consist of only one
gene. In contrast to Dunn’s and Davis-Bouldin, silhouette index relies not on global
cluster distances but calculates distances between neighboring clusters. That might be
the reason why it is less sensitive to increasing k.

Skipping of the first 6 data points results in the melting of two clusters. This demon-
strates on the one hand that the first data points are important for cluster discrimination
and on the other that cluster C is less stable than the others.
In Western blots performed by Jana Keil with the same cell line under the same con-
ditions as described in section 1.2, it can be seen that Ras concentrations increase
rapidly within the first 6 hours (data not shown). Thus, the Ras-dependent up- and
down-regulation of many genes might be delayed by the time Ras needs to reach high
concentrations after induction.
In this context Figure 3.3 is interesting, because it shows that genes in the first 6 time
points (0 to 6 h) form two groups that are inversed between the sixth and the seventh
time point and inversed a second time after IPTG removal. Thus, the two groups seen
between the first and the sixth time point, where the concentration of the HRAS onco-
gene probably has not reached its maximum, correspond to the groups found between
timepoints 13 to 15, where Ras-overexpression is switched off.
If the first 6 data points indeed represent a delay, gene expression ratios in this time
period are not relevant for cluster analyis, since they are not influenced by Ras over-
expression or reversal of transformation. In this case, there might be only three instead
of four clusters in the data set.
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Discussion of Cluster Members
Cluster A
This cluster is remarkable due to its large number of known tumor suppressors (Doc-2,
ETF, p15-ink4b, P-cadherin, WT1, Tsc36, Gas-6, TIMP-2, MKP-1) that are down-
regulated. More importantly, these genes are up-regulated again as soon as IPTG is
removed, demonstrating the reversibility of their suppression. The mechanism of Ras
signaling and suppression of these genes is currently unknown.

Cluster B
This cluster contains immediate early genes like junB that are rapidly up-regulated
during the first 6 hours and retain an elevated expression level until IPTG-removal. A
particularly high number of transcription regulating genes is found in this cluster (JunB,
JunD, RhoA, Rap1b, KS-1, p53). The up-regulation of known Ras targets related to
transformation (MMP1, MMP3) confirms earlier findings obtained from IR-4 cells
and other cell models [SERS ET AL. 02]. It is of note that cluster B also contains the
dual specificity phosphatases MKP-3 and MKP-4, known to act in the cytoplasm as
deactivators of P-MAPK. The over-expression of oncogenic Ras therefore enhances
the negative feedback loop exerted by the DUSPs. Interestingly, the important tumor
suppressor p53 is also up-regulated.

Cluster C
Cluster C is the least well defined of all four clusters and consists of genes that are
up-regulated from the start but in contrast to cluster B not clearly down-regulated upon
IPTG-removal. Striking in this cluster is the existence of two prominent peaks, hinting
for the periodic expression of some cluster members (especially Mob-1 and interferon
induced gene). The cluster contains tumor suppressors (Lot-1, GADD153) as well as
genes associated with transformation (MMP10, Granulin, Syndecan-1) and the two
most strongly over-expressed genes in the whole data set: Mob-1 and MMP10.

Cluster D
Cluster D is a heterogeneous group containing three known tumor suppressors (FISP-
12, thrombospondin-1 and Lox), two genes involved in metabolism (Cox2, balb-c) and
two others related to cell shape and motility (Arp, fibronectin). Although function-
ally diverse, these genes show a remarkably similar behavior with a prominent peak
at 12 h, followed by down-regulation, which is not reversed upon IPTG-removal. As
has been noted by O. Raudies (paper in preparation), these genes might not participate
in the phenotypic reversion of Ras-transformed cells since their expression values are
not affected by IPTG-removal. Interestingly, Lox can be repressed in non-induced IR-
4 cells by adding medium obtained from induced IR-4 cells. Thus, a secreted factor
might be responsible for Lox repression (an autocrine loop involving the EGF receptor
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is already reported for Ras-transformed MCF-10A cells [SCHULZE ET AL. 01]). Block-
ing of the MEK/ERK-pathway with a MEK-inhibitor prevented Lox down-regulation
in the medium-treated non-induced cells [SERS ET AL. 02]. This demonstrates that
the MEK/ERK-pathway is involved in Lox repression. A similar blocking experi-
ment with another cell line done by the same authors demonstrates the dependence of
thrombospondin-1 down-regulation on the MAPK-cascasde.

In preceding experiments Sers and colleagues noticed that down-regulation of genes
has the same importance for transformation as up-regulation [SERS ET AL. 02]. This is
clearly visible in the standardized data set where roughly half the genes is up-regulated
and the other half down-regulated. Another interesting point is that most clusters con-
tain tumor suppressors as well as oncogenes. The co-regulation of oncogenes and tu-
mor suppressors makes it hard to infer simple relationships between gene regulation
and transformation. This underlines the complexity of Ras signaling and the pathways
involved.
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Factor Targets

If genes are co-expressed, they might be regulated by the same transcription factor.
Thus, clustering provides candidate groups for transcription factor binding site (TFBS)
screening. Of the four clusters identified in the previous chapter, cluster B is the most
promising for investigation of TFBS, because it shows a high similarity of gene ex-
pression vectors and fast up-regulation. Interestingly, this cluster contains three known
serum response factor (SRF) targets and in addition the time course of gene expression
is very similar to the time course of SRF observed from a Northern blot. Therefore,
members of cluster B were chosen for SRF target screening.

4.1 Serum Response Factor and its Targets

Before presenting the method and discussing the results of the SRF screen, important
information concerning SRF and its known binding sites is given in this section.

4.1.1 Biological Background

SRF
SRF belongs to the MADS-box family of transcription factors. The MADS-box, located
at the N-terminus of the SRF protein, contains a DNA-binding domain, a dimerization
domain and an interface for protein-protein interactions [MIANO 03]. The binding site
of SRF, also known as the CArG-box, has the core motif CC(A/T)

6
GG.

It is of note that this motif is nearly the same if read from the opposite strand and the
opposite direction. Such a symmetry is also called a palindrome and typical for DNA
sequences that are recognized by dimeric proteins. Deviations from the core motif are
known for some promoters (for example SRF, CArG-box 4 [BELAGULI ET AL . 97]).
SRF binds to the CArG-box as a homodimer. The two terminal G residues of the CArG-
box on both DNA strands are important for contact formation, since their mutation
disrupts binding of SRF to the motif. The AT-core is also strongly preserved. Its com-
position of nucleotides forming only two hydrogen bonds eases the observed bending
of the CArG-box [MIANO 03].
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SRF targets can be separated into two functional groups: muscle related and im-
mediate early genes [GINEITIS & T REISMAN 01]. Induction of immediate early genes
(IEGs) by SRF requires a ternary complex factor (TCF), whereas induction of muscle
related genes by SRF is TCF independent. Because it is often found in serum-induced
IEGs, the region that combines the TCF binding site (also called the Ets-motif) and the
CArG-box is known as serum response element (SRE).

Ternary Complex Factors
TCFs are a subfamily of the Ets-domain transcription factors (Ets proteins). In mam-
mals, three TCFs are known: SAP-1, SAP-2 (Net/ERP) and Elk-1. ETS-proteins
share four conserved domains: the Ets DNA-binding domain that recognizes Ets bin-
ding sites in target genes, the C- and D-domain and the B-box. The D-domain of
the Ets-protein interacts with P-MAPK, which leads to the phosphorylation of the C-
domain and activation of the Ets-protein. Activated TCFs have a higher ability to
bind DNA and to form ternary complexes together with SRF and DNA than inactive
TCFs. In these complexes, contact between SRF and TCF is mediated by the B-box
[V ICKERS ET AL. 04]. The core motif recognized by all Ets-proteins has the sequence
GGA(A/T) [GRAVES& PETERSEN98].

Ternary Complex Formation
Mo et al. succeeded in crystallizing the ternary complex formed by SAP-1, SRF and
c-fos SRE [MO ET AL. 01]. The structure of the complex clearly showed the binding of
SRF and SAP-1 at opposite sites of the DNA and bending of the DNA. Interestingly, the
authors describe contact formation between SRF and nucleotides outside of the CArG-
motif. They suggest that the nucleotides flanking the CArG box mediate differential
binding of SRF to DNA in presence and absence of SAP-1.

The distance between the CArG-box and the Ets-motif can vary, because the B-box
is attached to the TCF by a flexible linker. Also, the relative orientation of both motifs
is not fixed [BUCHWALTER ET AL. 04].

4.1.2 Known and Predicted SRF Targets

Muscle-related Genes
In his review, Miano lists known, muscle-related SRF binding sites together with their
distance to the transcription start site (TSS). Most of these CArG-boxes are positioned
2-3 kb around the TSS. The author suggests that this distance is of biological relevance,
since interaction of RNA polymerase II with SRF is known to take place [MIANO 03].

Immediate Early Genes
The focus of the current study is on IEGs rather than muscle-related genes. For IEGs
it is known that SRF regulation includes TCF formation. Therefore, an overview of
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genes with validated SREs is given in Table 4.1. Three of them (mcl-1, egr-1, c-fos) are
described as TCF-regulated in [VICKERS ET AL. 04], junB is mentioned to be regulated
by a ternary complex in [BUCHWALTER ET AL. 04]. It is of note that junB is a member
of cluster B.

Gene (species) SRE sequence
(distance from
TSS)

Additional
CArG-boxes

Validation
methods

Authors

mcl1 (human) CCGGAAGCTG

CCGCCCCTTTCC

CCTTTTATGG

(Blat: -61)
(authors: -128)

- luciferase re-
porter assays

[Townsend ET

AL.98]

egr-1 (mouse) 1) GGAAACG

CCATATAAGG

(authors: -415)
(Blat: -414)
2) CGGAACAGA

CCTTATTTGG

(authors: -379)
(Blat: -379)
3) CCTTATATGG

AGTGGAGTGG

CCC(N)37GG

CTCTGGGAGGA

(authors: -355)
(Blat: -353)

- site-specific
mutations in
combination
with luciferase
reporter assays

[Clarkson ET

AL.99]

junB (mouse) CTTCCTGTGC

CCTAATATGG

(authors:-1462)
(Blat: -1740)

CCATATATGG

(authors:+2084)
(Blat: +1812)

promoter re-
gion: reduction
of response to
mitogens upon
site-specific
mutation
downstream:
luciferase re-
porter assays

[PHINNEY ET AL.95]

downstream:
[PEREZ-ALBUERNE

ET AL.93]
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Gene (species) SRE sequence
(distance from
TSS)

Additional
CArG-boxes

Validation
methods

Authors

c-fos (human) ACAGGATGT

CCATATTAGG

(authors: -216)
(Blat: -329)

- site-directed
mutation ana-
lysis, trans-
cription of
actin gene with
synthetic c-fos
CArG-box,
crystallization
of ternary
complex

sequence anno-
tation given in
[M O ET AL. 01],

distance to TSS
and validation
methods except
crystallization
given by
Wasserman
and Fickett
(http://www.cbil.

upenn.edu/MTIR/

HomePage.html)

Table 4.1: This table lists known SREs. The first column gives the name of the gene
and the organism where its promoter was characterized. The second column
displays the sequence with CArG-box and Ets-motif underlined. The distance
to the TSS as indicated by the authors and as detected by using BLAT is given
in parentheses. A minus (-) signifies a position upstream of the TSS whereas
a plus (+) stands for a position downstream of the TSS. The third column
lists additional CArG-boxes that are not part of a SRE. In the fourth column,
verification experiments are given and the last column lists the sources of
information used.

For the following two CArG-box containing genes it is unclear whether they are reg-
ulated by SRF alone or whether TCF formation takes place. Therefore, they are not
listed in Table 4.1 but discussed separately.

PDGF-A
In the human promoter of PDGF-A, a CArG-box 477 bp upstream of the TSS (sequence:
CCTTTTATGG) was validated [LIN ET AL . 92]. An Ets-site is not mentioned in this
promoter study. Like junB, PDGF-A is also a member of cluster B.

SRF
SRF is known to contain four different CArG-boxes and one Ets-site
[BELAGULI ET AL . 97] with the following sequences (numbering of the CArG-boxes
according to the authors):
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S4: CCTTTAAGG
S3: CAAATAAG
S2: CCATATAAGG
S1: CCATAAAAGG
Ets: GCTGGAATT

Concerning the formation of a ternary complex at the SRF promoter, contradictory in-
formation is given in the literature. According to Spencer et al., the murine SRF gene is
induced upon basic fibroblast growth factor stimulation either by the Ras pathway via
Sp1 or by the RhoA/Rac1 pathway via SRF binding to the CArG-box without involve-
ment of a ternary complex [SPENCER ET AL. 99].
In contrast, in a more recent study on fragments of the mouse promoter, it is stated that
SRF indeed is induced upon serum stimulation by a ternary complex composed of Elk-1
and SRF [KASZA ET AL . 05]. Inspection of the murine SRF promoter published by Be-
laguli et al. reveals that the Ets-site is separated by more than 150 bp from the nearest
CArG-box [BELAGULI ET AL . 97]. These different findings might be reconciled if the
existence of another Ets-site in close proximity to a CArG-box is assumed. It might also
be possible that TCF formation can take place over large distances.

However, both studies establish a link between Ras signaling and SRF induction and
point to the existence of a positive feedback loop. Because of this loop, the gene ex-
pression curve of SRF is expected to be similar to those of its targets. Therefore, the
similarity of the time course of cluster B to that of SRF indicates potential regulation of
cluster members by SRF.

Experimental Evidence
Recently, SRF knockout experiments were performed using Affymetrix microarrays and
a gene list of potential SRF targets was derived, whose members were further analyzed
for the occurrence of CArG-boxes [PHILIPPAR ET AL. 04]. The known SRF targets
junB, egr-1, egr-2 and cyr61 were detected as well as three new target genes, namely
tuftelin-1, fhl2 and keratin-17.

Another group studied the effects of blocked pathways on gene expression with the
help of microarrays [TULLAI ET AL . 04]. Four large groups of genes were obtained:
PI3K- and MEK-independent, MEK-dependent, PI3K-dependent and PI3K- and MEK-
dependent. These groups were further screened for SRF binding sites within 1 kb
upstream of the TSS. Thus, 16 CArG-boxes in 10 promoters were predicted, 13 of
them conserved in mouse. To validate these findings, the authors used chromatin im-
munoprecipitation and measured the enrichment of CArG-containing promoters over
GAPDH. Among the novel SRF targets identified in the MEK-dependent group is cpg21
(DUSP5), a member of cluster B. In addition, the known target genes egr-1 and fos were
confirmed.
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Predictions
The prediction of CArG-boxes performed by Dieterich et al. is exclusively based on
phylogenetic footprinting. With the help of alignments, conserved non-coding sequence
blocks (CNBs) were found. These CNBs were screened with string representations
of known TFBS from TRANSFAC. Alternatively, a scan with weight matrices was
done. Interestingly, junB and DUSP2 were among the predicted candidate genes
[D IETERICH ET AL. 03].

In a recent study presenting the CNB database CORG, it is stated that upstream re-
gions of SRF are conserved in human and rodents as well as in fish. This points to the
presence of the positive feedback loop not only in mammals but also in other vertebrates
[D IETERICH ET AL. 05].

4.2 Material and Methods

A summary of the prediction procedure is given in Figure 4.1.

4.2.1 Software

In general, scripts used in this section were written in Perl. Screening was done with
BioMinerva, a collection of modules implemented by Steffen Grossmann based on
BioPerl. BioMinerva allows easy handling and efficient storage of sequences, as it fully
supports the gff format. This format implements definitions and their relationships
given by the sequence ontology (SO).
The SO consists of a structured set of terms defining sequence properties that are
connected via is-a (a gene is a sequence) and part-of (an exon is part of a gene)
relations. Because of its well defined concepts, the SO and its representation by gff is
particularly valuable for sequence annotation and was used throughout this work.

Both the SO terms and the description of the newest version of gff (gff3) are freely
available under http://song.sourceforge.net/gff3.shtml.

4.2.2 Sequence Retrieval

Window Size
The length of the sequences under investigation has to be balanced carefully. On the one
hand, by choosing a short sequence one might miss motifs, on the other hand, a long
sequence increases the number of false positives.
In case of SRF, the summary on CArG-box distances from the TSS given by Miano
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Figure 4.1: This flow chart summarizes the procedure used for the prediction of SRF targets.
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indicates that most known SRF binding sites are covered by a 5 kb window up- and
downstream of the TSS. Therefore, a sequence window of this size was screened up-
stream from the TSS together with the first intronic region. If several transcripts were
available, additional regions resulting from a shifted TSS were also screened. Because
downstream regions are known to contain CArG-boxes (for example junB), a region 5
kb downstream of the end of transcription of the longest transcript was also retrieved.
It is assumed that most transcription factor binding sites are situated upstream of the
TSS or in some distance from the end of transcription. Therefore, introns (except for
the first) and exons were not screened as for long genes this would increase the multiple
testing problem. Due to this restriction, some TFBS might be missed.

Database
Sequences have been retrieved from the Ensembl database with the help of the Ensembl
Perl API and saved in fasta format. Repeats in the sequences were masked. As gene
models stored in Ensembl are updated on a two-month basis, one version was chosen
for each species and used throughout this work.

Human: homo_sapiens_core_26_35
Mouse: mus_musculus_core_26_33b
Rat: rattus_norvegicus_core_26_3d

Ensembl (version 26) gene predictions are based on the NCBI35 assembly for the hu-
man genome, on the RGSC v3.1 assembly for the rat genome and on the NCBI33 as-
sembly for the mouse genome. In addition, ab initio predicted genes in Ensembl are
cross-checked with cDNAs stored in RefSeq during the Ensembl prediction pipeline
[CURWEN ET AL. 04]. Therefore, gene models obtained from Ensembl agree well with
cDNAs from RefSeq.

Validation of TSS
Because Ensembl gene predictions are not always reliable, the TSS given by En-
sembl was compared with the TSS stored in the DBTSS (DataBase on Transcription
Start Sites [SUZUKI ET AL . 04]) and in the EPD (Eukaryotic Promoter Database
[PÉRIER ET AL. 00]).

The EPD comprises a non-redundant collection of experimentally verified and
annotated promoters. In this database, a promoter is defined as the upstream gene
region next to the TSS. The EPD is restricted to RNA polymerase II binding sites of
higher eukaryotes and accessible via a web interface.

The DBTSS gives the sequence and the genomic position of full-length cDNAs
(which include the 5’-end of their corresponding mRNA). The data is based on a
newly developed method for the construction of full-length cDNA libraries, named
oligo-capping. The newest version of DBTSS covers several species, among them
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mouse and human. It also provides cross-references to RefSeq and other databases.

Promoter sequences given in the EPD were mapped onto the genome with the blat
program provided by the UCSC genome browser ([KAROLCHIK ET AL . 03]).

4.2.3 Phylogenetic Footprinting

The prediction of TFBS inevitably leads to a high number of false positives. To
enhance specificity of prediction two techniques are frequently employed: phylo-
genetic footprinting and detection of combined TFBS, so called regulatory modules
[WASSERMAN& SANDELIN 04].

Phylogenetic footprinting is based on the assumption that selective pressure
on TFBS leads to their conservation in different species. Species have to
be chosen carefully to avoid too much or too few conservation between them
[WASSERMAN& SANDELIN 04]. It was suggested to compare man and mouse se-
quences, since these two species display highly conserved elements as well as lack of
overall conservation [DIETERICH ET AL. 02]. In the current work, first the rat sequences
were aligned to orthologous genes in the mouse. Because these species showed a high
degree of conservation for the chosen genes, sequences of both were also compared to
their human orthologues.

The term orthologous gene is applied to genes that are derived from a common ances-
tor and separated by speciation [WASSERMAN& SANDELIN 04]. In this study, ortholo-
gous genes were retrieved from the Compara database provided by Ensembl. Informa-
tion stored in Compara can be easily accessed via the Ensembl API and was obtained
using a script written by Steffen Grossmann.

Next, an alignment program written by Huang and Miller and extended by C. Di-
eterich et al. was employed for the detection of CNBs. The program is based on the
Waterman-Eggert algorithm, a local alignment algorithm that finds sub-optimal align-
ments by recalculation of the alignment matrix. This extension of Waterman-Eggert
is appropriate in the context of regulatory sequences, since it is both fast and allows
assessment of statistical significance [DIETERICH ET AL. 02]. It was run on the fasta
files containing the orthologous sequences with the standard parameters (number of
alignments: 100, score matrix: Kimura PAM10, gap penalty: 1000, gap extension: 50,
probability cut-off: 0.005). Weight matrix scan was done on the significant alignments
only.
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4.2.4 Screening

From the PSCM to the PSSM
To screen sequences for a certain binding site a model of this binding site is needed.
Among the models developed for the description of TFBS two are especially common:
the consensus sequence and the position specific count matrix (PSCM).
Both are derived from a multiple alignment of known binding sites, but whereas the
consensus sequence can be obtained directly from the PSCM, the PSCM contains more
information and cannot be inferred from the consensus sequence.
The PSCM lists for each nucleotide j the number of its occurrences for each position i of
the multiple alignment with length L (for the sake of simplicity, it is assumed that all se-
quences of the alignment have the same length, which is the case for most PSCMs). For
an alignment of nucleotide sequences, the PSCM consists of L rows and four columns.
The PSCM is transformed into the position specific frequency matrix (PFM or profile)
by dividing each entry by the number of sequences. The entries in the PFM correspond
to the probability of finding nucleotide j at position i.
Next, the position specific score matrix (PSSM) is calculated by dividing the profile
of the TFBS (signal profile) by the background profile and taking the logarithm. This
log-likelihood-ratio defines the score for a given nucleotide at a certain position. The
background profile gives the probability of finding nucleotide j at position i in a motif
taken from a random sequence. The calculation of the background profile is dependent
on the gc-content of the sequence under investigation.

Because zero entries in the signal profile would lead to a logarithm of zero in the
PSSM, regularization prior to the calculation of the PSSM is necessary. This is also
biological meaningful, as the observation of zero for one nucleotide in a certain position
might not be true for all occurrences of the TFBS.

Regularization
In this work, the regularization method introduced by Rahmann and colleagues has
been applied [RAHMANN ET AL . 03] as it allows position-dependent regularization and
leaves core motifs untouched. Their approach finds the optimal balance between the
overall column-wise nucleotide distribution and the nucleotide distribution at each row
of the PSCM. Out of a family of regularizing distributions, the best is found by stepwise
adjustment of a weight parameter.

Score Scaling
Scaling of the scores was performed as suggested by Rahmann et al. by dividing the
scores obtained from the PSSM by 0.05. In addition, scores were rounded to integers.
This is of advantage for the computational calculation of score distributions. The natural
logarithm has been applied for the calculation of position dependent nucleotide scores.
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Score Calculation, False Positives and False Negatives
Sequence screening is done by defining a window of suitable size and shifting it along
the sequence base by base. For each subsequence contained in the current window, the
score is calculated according to the chosen TFBS model. In case of the PSSM, the
individual scores of the nucleotides are summed over the sequence window.

If a sequence window scores higher than a given threshold although it is generated
by the background model, it is regarded as false positive (FP). On the other hand, if a
motif generated by the signal model scores below the given threshold, it is called a false
negative (FN). In case of a PSSM, the amount of expected FN and FP can be derived
from a calculation of the score distribution of both the background and the signal model.

The BioMinerva implementation of score distributions is based on the approach
outlined by Rahmann and colleagues [RAHMANN ET AL . 03]. The score of all se-
quences which can be generated by the PSSM is calculated together with its probability
under the signal and the background profile. Computation is speeded up by adding up
probabilities of scores with identical values in the intermediate steps, thus reducing
the amount of possible scores in each step. This allows the calculation of all scores
obtainable from the matrix (maximal 4L, with L as matrix length) together with their
probabilities in a sufficiently short time.

With these score distributions at hand, a suitable score threshold for the acceptance
of a sequence motif as TFBS can be defined. There are three strategies available for
threshold choice:

1) reduction of FPs
2) reduction of FNs
3) balanced number of FPs and FNs

If the reduction of FPs is favored over the detection of true positives, the selectivity
of the screen is enhanced at the cost of missing true instances. On the other hand, if
one wants to detect as many true positives as possible, the sensitivity of the screen is
enhanced at the cost of more FPs. The third strategy balances sensitivity and selectivity.
In this study, the first strategy was chosen, because in the context of TFBS screening
missing a true instance is less costly than the prediction of a FP, since the verification
methods are both time intensive and expensive.

Because many windows are scored for each sequence, the issue of multiple testing
arises. To tackle this problem, Rahmann and colleagues distinguish the sequence alpha
error probability (αn) from the window alpha error probability (α). The windows are
regarded as statistically independent, although they overlap. This is justified, since only
a small number of separated TFBS is expected to occur in the sequence. For a sequence
of length n the probability that at least one out of n windows will score higher than the
threshold is given byαn. The probability of a FP for a given number of independent
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tests follows a Poisson distribution, thusαn can be defined as:

αn(t) = 1− (1−α(t))n ≈ 1−exp(−nα(t)) (4.1)

with t denoting the threshold and n the number of windows (notation follows
[RAHMANN ET AL . 03]). The selectivity of a given PSCM is then defined as:

Qsel(PSCM) = 1−αn(t) (4.2)

A similar reasoning holds for the false negatives. The occurrence of at least one FN
in a sequence with m true instances of the TFBS is given as follows:

βm(t) = 1− (1−β(t))m (4.3)

The sensitivity of a given PSCM follows:

Qsen(PSCM) = 1−βm(t) (4.4)

Rahmann et al. suggest the use of n = 500 and m = 1 for multiple test correction.
Thus, the threshold is chosen such that in a sequence with 500 bp length one FP is
expected for the specified level of significance. The suggested values for m and n were
used for the current work with 0.05 as the given level of significance (p-value).

4.2.5 Matrices

Matrix Databases
Position specific count matrices are available from Transfac, which contains a collection
of PSCM derived from the literature and Jaspar, a smaller, non-redundant database of
PSCMs. The T-Reg database [ROEPCKE ET AL. 05] stores both databases locally in a
common framework and has been used in this study.

SRF Matrices
In T-Reg, seven matrices describing CArG-boxes were found. Their properties are given
in Table 4.2.

Matrix-ID Consensus
sequence

Information
content in
nats

Source
(quality)

Species Database

M00152 ATGCCCATA

TATGGWNNT

16.37 SELEX,
33 selected
binding
sequences

artificial
sequences
(SRF from
mouse)

TRANSFAC
PUBLIC
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Matrix-ID Consensus
sequence

Information
content in
nats

Source
(quality)

Species Database

M00186 GNCCAWATA

WGGMN

9.86 21 com-
piled
sequences
(Q6)

mixture TRANSFAC
PUBLIC

M00215 DCCWTATAT

GGNCWN

10.46 consind
generated
matrix

mixture TRANSFAC
PUBLIC

M00810 SCCAWATA

WGGMN

MNNNN

10.27 27 com-
piled
sequences
(Q4)

mixture TRANSFAC

M00922 CCAWATAW

GGMNMNG

9.53 29 com-
piled
sequences
(Q5)

mixture TRANSFAC

M01007 CNKNKCCTTA

TWTGGNNNN

10.22 54 com-
piled
sequences
(Q5)

mixture TRANSFAC

MA0083 GCCCWTAT

AWGG

12.26 SELEX artificial se-
quences

JASPAR

Table 4.2: The first column lists the matrix-IDs as stored in T-reg. The consensus se-
quence displayed in the second column gives for each position the most fre-
quent nucleotide (D = A/G/T, K = G/T, M = A/C, N = any nucleotide, S =
G/C, W = A/T). In the third column, the information content of the matrices
based on the natural logarithm is shown. The fourth column indicates the
data on which the matrix is based, SELEX stands for artificial binding site
selection, whereas consind refers to the program ConsIndex that is used for
automated matrix generation. For compiled matrices, a quality index is as-
signed by TRANSFAC with the following meanings: Q4 = known binding
sequence, Q5 = binding of uncharacterized extract protein to a binding site,
Q6 = no quality assigned.

It is of note that most of the matrices listed in Table 4.2 not only contain the cen-
tral CArG motif but also a varying number of additional bases. This might reflect the
importance of flanking base pairs as mentioned by Mo et al. [MO ET AL. 01].
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To detect SREs rather than CArG-boxes only, it might be of value to assemble a new
matrix which contains only verified SREs. But inspection of the SREs outlined in Table
4.1 demonstrates that distances between CArG-boxes and Ets-sites are in fact too vari-
able for the matrix to be useful in SRE-detection. This variability clearly demonstrates
the flexibility of the linker region in TCFs. Therefore, the two binding sites were not
combined in a matrix but rather searched for individually.

Ets Matrices
In order to detect SREs the predicted CArG-boxes were screened for Ets-sites 50 bp
up- and downstream of the CArG motif, because in most SREs the distance between
the CArG-box and the Ets-site does not exceed this value. The parameters chosen for
CArG-box detection were also used for Ets motif screening. Vertebrate Ets binding
sites are represented in T-Reg with 17 different PSCMs, whose properties are given in
the Appendix (Table C).

Matrix Distances
Since many different PSCMs for both the CArG-box and the Ets-site are available, it is
desirable to measure the difference between two matrices. If the differences were mi-
nor, this would allow to restrict the screen to only one suitable matrix for each binding
site. Three different approaches for the measurement of matrix differences have been
published recently.

Relative information content[ROEPCKE ET AL. 05]
In this approach, the relative information content (ICrel) is used as similarity measure
for two position specific weight matrices.
TheICrel of a matrix A with respect to a matrix B is calculated row-wise as follows:
a) In the region of the overlap:ICrel = ∑O

i=1Erel(Ai ,Bi)
b) Outside of the overlap:ICrel = ∑L

i=1 log(4)−E(Ai)
Erel andE denote the relative entropy and the entropy, whereasO stands for the length
of the overlap andL for the length of the non-overlapping region.
Finally, the overlap-dependent values of theICrel are summed up to obtain theICrel for
matrix A with respect to matrix B.
In order to find the optimal shift between two matrices,ICrel is calculated for all possi-
ble shifts (a minimum overlap of both matrices is required). The shift with the largest
associated information content is then returned as the optimum. It is of note that this
measure is not symmetrical.

Correlation-based similarity measure C[KIEŁBASA ET AL.05, in press]
For the calculation of the Pearson correlation coefficient, a test sequence with random,
equi-distributed bases is screened with either of the two PSSMs under investigation. For
each of the possible shifts between the two matrices (with minimum overlap of 6 bp) the
correlation coefficient of the corresponding scores is calculated. The highest correlation
coefficient from all shifts is used as the similarity measure C.
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χ2-based similarity measure D[KIEŁBASA ET AL.05, in press]
For the calculation of the similarity measure D, the nucleotide composition of all possi-
ble overlaps (again minimum 6 bp) between two PFMs is compared. To assess similarity
of the two base count distributions, theχ2-test is applied row-wise and the number of
significantly different rows is calculated for each shift. The shift resulting in the
smallest number of different rows is chosen and its corresponding number of different
rows taken as the similarity measure D.

4.3 Results

4.3.1 Promoter Veri�cation

The DBTSS does not indicate a single nucleotide as start site for a given gene, but rather
contains a distribution of cDNA start sites. For all genes investigated, the RefSeq TSS
was positioned within this range.
In the table below, the average range of cDNA start sites over all genes found in the
DBTSS is given:

Species Mouse Human
Mean range in bp 197 319
Median range in bp 105 176

In a study covering 276 human genes, an average range of start sites of 62 bp was
obtained [SUZUKI ET AL . 01]. The authors also mention that genes can be divided in
two classes according to their range of start sites: those with tightly clustering start sites
and those with highly variable start sites. The large value for human genes found in
the present study is due to mainly two genes with exceptional wide ranges (guanine
nucleotide binding protein and jak1). To obtain a less biased average range, the median
range was also calculated.

The table below lists start sites stored in the EPD in comparison with those from En-
sembl. The TSS is given in absolute chromosomal coordinates. Only a small subset of
the 25 genes under investigation could be found in the EPD.
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Gene Species Ensembl-ID TSS given TSS given
(Chromosome) by Ensembl by EPD
Antioxydant enzyme human ENSG00000167815 12773694 12773683
(Chr19)
HNOP56 human ENSG00000101361 2581254 2581278
(Chr20)
ODC-1 human ENSG00000115758 10539051 10539090
(Chr2)
ODC-1 mouse ENSMUSG0000001117917672074 17672074
(Chr12)
P53 human ENSG00000141510 7531642 7531677
(Chr17)
Ppp1 human ENSG00000172531 66925952 66925903
(Chr11)

For those genes where comparison of both databases was possible, the start sites
correspond well. In average, the TSS given by the EPD differs less than 30 bp from the
TSS stored in Ensembl.

4.3.2 Matrix Selection

Matrix distances were measured with the three methods described in section 4.2.5 and
are given in Figures 4.2-4.5. The tree structures in Figure 4.2 and 4.4 were obtained
from http://wmcompare.gene-groups.net.

SRF
The two matrices derived from SELEX experiments (M00152, MA0083) are indicated
as closest to each other by all three methods. In the tree, they are separated from the
other matrices (see Figure 4.2) and form their own cluster. In agreement with these
findings, the distance between these matrices is encoded by light colors in Figure 4.3
(see upper left and lower right corner).

The matrices based on known binding sites form a cluster of relatively high sim-
ilarity. From this cluster, M00810 was chosen, because it has a high quality, a high
information content and is derived from a comparatively high number of validated
binding sites. Its composition cannot be published in this work, since M00810 is stored
in the commercial part of TRANSFAC.

The two SELEX matrices with their high information content were not considered
for screening as it is unclear whether results obtained from artificial binding sites are
biologically meaningful.
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Figure 4.2: Here, the tree structure resulting from similarity measures D and C is shown for the
SRF matrices. Missing links between the matrices indicate C and D values below the threshold
(C = 0.8, D < 2). It is of note that the regularization of PSCMs differs from the approach used
for matrix screening. The tree was obtained with the help of software written by Kiełbasa and
colleagues.
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Figure 4.3: ICrel dissimilarity matrix of SRF matrices is given with colors ranging between
white (highICrel) and red (lowICrel).
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Figure 4.4: Here, the tree structure resulting from similarity measures D and C is shown for the
Ets matrices. Missing links between the matrices indicate C and D values below the threshold
(C = 0.8, D < 2). It is of note that the regularization of PSCMs differs from the approach used
for matrix screening. The tree was obtained with the help of software written by Kiełbasa and
colleagues.

Ets
The Ets matrices are separated into two clusters and three single matrices (see Figure
4.4). This result agrees well with the dissimilarity matrix (see Figure 4.5). If for exam-
ple M00971 is investigated in the dissimilarity matrix, its closest neighbors (M00678,
M00771, M00655 and MA0098) are found to be connected with it in the tree.
For Ets-screening, restriction to one matrix is not necessary, since the screened se-
quences are very short. The larger of the two clusters is more interesting, because it
contains two matrices for the known ternary complex factor Elk-1 (M00007, M00025).
Members of this cluster show different degrees of similarity, so selecting only one ma-
trix might reduce detection power. Therefore, all members of the Elk-1 cluster were
chosen for screening.
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Figure 4.5: ICrel dissimilarity matrix of Ets matrices is given with colors ranging between white
(high ICrel) and red (lowICrel).
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4.3.3 SRF Target Screening

Conservation
The table below gives the degree of conservation expressed as the percentage of se-
quence length left after the alignment. This percentage is averaged over all investigated
genes.

Alignment Mouse vs Rat Mouse vs Human Rat vs Human
upstream 62.7 (mouse) 16.9 (mouse) 14 (rat)

64.2 (rat) 15.8 (human) 13 (human)
downstream 68.1 (mouse) 29.9 (mouse) 28.1 (rat)

68.9 (rat) 30.4 (human) 28.6 (human)

It is of note that downstream regions are better conserved than upstream regions. This
might be due to the first intron, which is included in the upstream region and which
might be less conserved than the downstream region.
In addition, sequence length is not substantially reduced by mouse/rat alignments. This
demonstrates that mouse and rat are too closely related for effective phylogenetic foot-
printing.

Promising SRF Target Candidates
Screening for SRF binding sites revealed a number of promising target genes. As the
conservation between mouse and rat is high, only those genes are chosen as likely can-
didates that contained at least one CArG-box conserved in rodent and human sequences.
PDGF-A as the only exception will be discussed in section 4.4. The winning hits are
described in detail in Table 4.3 below.

Gene, num-
ber of hit
(alignment)

Position of
hit (strand),
distance to
TSS in bp

Length of
all CNBs
screened in
bp (FPs)

Hit-CNB:
percent-id,
gc-content

Hit: score
(cut-off),
sensitivity

Sequence of
CArG-Box

Alpha ac-
tinin, 1. hit
(mousevs
human)

Chr7: 17900584-

17900601(-),
+30739

12219 (up)
1215 (down)
(27)

72,
0.49

239 (129),
0.91

CCTTATATGG

Alpha ac-
tinin, 2. hit
(mousevs
rat)

Chr7: 17904603-

17904620 (+),
+26720

44107 (up)
4503 (down)
(97)

47,
0.47

154 (129),
0.91

CCAAAAATGG
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Gene, num-
ber of hit
(alignment)

Position of
hit (strand),
distance to
TSS in bp

Length of
all CNBs
screened in
bp (FPs)

Hit-CNB:
percent-id,
gc-content

Hit: score
(cut-off),
sensitivity

Sequence of
CArG-Box

Alpha ac-
tinin, 3. hit
(mousevs
human)

Chr7: 17914645-

17914662 (-),
+16678

12219 (up)
1215 (down)
(27)

63,
0.51

131 (129),
0.91

CCTAATAAGG

Alpha ac-
tinin, 1. hit
(rat vs
human)

Chr1: 84131115-

84131132 (-),
+20655

11205 (up)
1628 (down)
(26)

70,
0.49

153 (129),
0.91

CCTAATAAGG

Alpha ac-
tinin, 2. hit
(rat vs
mouse)

Chr1: 84115517-

84115534 (-),
+36253

44569 (up)
4623 (down)
(98)

47,
0.48

206 (129),
0.91

CCAAAAAAGG

Alpha ac-
tinin, 3. hit
(rat vs
human)

Chr1: 84117050-

84117067 (-),
+34720

11205 (up)
1628 (down)
(26)

71,
0.51

265 (129),
0.91

CCTTATATGG

Alpha ac-
tinin, 1. hit
(human vs
mouse)

Chr19:

43848730-

43848747 (+),
+18563

12701 (up)
1238 (down)
(28)

63,
0.53

162 (129),
0.91

CCTAATAAGG

Alpha ac-
tinin, 2. hit
(human vs
mouse)

Chr19:

43842314-

43842331 (-),
+12147

12701 (up)
1238 (down)
(28)

74,
0.44

208 (127),
0.92

CCAAATAAGG

Alpha ac-
tinin, 3. hit
(human vs
mouse)

Chr19:

43866218-

43866235 (+),
+36051

12701 (up)
1238 (down)
(28)

72,
0.52

240 (129),
0.91

CCTTATATGG

Cpg21,
1. hit
(mousevs
human)

Chr19:

52886096-

52886113 (-),
-262

3513 (up)
1043 (down)
(9)

58,
0.7

274 (115),
0.96

CCATATTTGG
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Gene, num-
ber of hit
(alignment)

Position of
hit (strand),
distance to
TSS in bp

Length of
all CNBs
screened in
bp (FPs)

Hit-CNB:
percent-id,
gc-content

Hit: score
(cut-off),
sensitivity

Sequence of
CArG-Box

Cpg21,
2. hit
(mousevs
human)

Chr19:

52886102-

52886119 (+),
-256

3513 (up)
1043 (down)
(9)

58,
0.7

253 (115),
0.96

CCTTATATGG

Cpg21,
1. hit
(rat vs
human)

Chr1:

259965196-

259965213(+),
-83

3559 (up)
678 (down)
(7)

63,
0.65

228 (121),
0.94

CCATATTTGG

Cpg21,
2. hit
(rat vs
human)

Chr1:

259965200-

259965217 (-),
-79

3559 (up)
678 (down)
(7)

63,
0.65

299 (121),
0.94

CCTTATATGG

Cpg21,
1. hit
(human vs
mouse)

Chr10:

112247568-

112247585 (-),
-98

3569 (up)
981 (down)
(9)

58,
0.74

243 (107),
0.98

CCATATTTGG

Cpg21,
2. hit
(human vs
mouse)

Chr10:

112247574-

112247591(+),
(-92)

3569 (up)
981 (down)
(9)

58,
0.74

283 (107),
0.98

CCTTATATGG

JunB, 1. hit
(upstream)
(mousevs
human)

Chr8: 84255704-

84255721 (+),
-1729

2644 (up)
1201 (down)
(8)

63,
0.57

211 (127),
0.92

CCATATTAGG

JunB, 2. hit
(down-
stream)
(mousevs
rat)

Chr8: 84252169-

84252186 (+),
+1806

4919 (up)
3628 (down)
(17)

56,
0.52

245 (129),
0.91

CCATATATGG

JunB, 1. hit
(upstream)
(rat vs
mouse)

Chr19:

24834889-

24834906 (-),
-1743

4911 (up)
3904 (down)
(18)

76,
0.56

192 (128),
0.92

CCATATTAGG
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Gene, num-
ber of hit
(alignment)

Position of
hit (strand),
distance to
TSS in bp

Length of
all CNBs
screened in
bp (FPs)

Hit-CNB:
percent-id,
gc-content

Hit: score
(cut-off),
sensitivity

Sequence of
CArG-Box

JunB, 2. hit
(down-
stream)
(rat vs
human)

Chr19:

24838425-

24838442 (+),
+1793

2685 (up)
1051 (down)
(8)

81,
0.71

290 (112),
0.95

CCATATATGG

JunB, 1. hit
(upstream)
(human vs
mouse)

Chr19:

12761755-

12761772 (-),
-1555

2774 (up)
1241 (down)
(8)

63,
0.7

220 (115),
0.96

CCATATTAGG

MKP-3,
1. hit
(mousevs
human)

Chr10:

99042450-

99042467 (+),
-1915

3582 (up)
2362 (down)
(12)

64,
0.58

197 (128),
0.92

CCTTTTTTGG

MKP-3,
2. hit
(mousevs
human)

Chr10:

99042534-

99042551 (+),
-1831

3582 (up)
2362 (down)
(12)

64,
0.58

159 (128),
0.92

CCAATTTTGG

MKP-3,
1. hit
(rat vs
human)

Chr7: 36911714-

36911731 (+),
-2254

3470 (up)
2517 (down)
(12)

66,
0.58

172 (128),
0.92

CCAATTTTGG

MKP-3,
2. hit
(rat vs
human)

Chr7: 36911630-

36911647 (+),
-2338

3470 (up)
2517 (down)
(12)

66,
0.58

196 (128),
0.92

CCTTTTTTGG

MKP-3,
1. hit
(human vs
mouse)

Chr12:

88250796-

88250813 (-),
-2032

3793 (up)
2371 (down)
(12)

64,
0.61

154 (125),
0.93

CCATTTTTGG

MKP-3,
2. hit
(human vs
mouse)

Chr12:

88250712-

88250729 (-),
-1948

3793 (up)
2371 (down)

64,
0.61

173 (125),
0.93

CCAAAATTGG
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Gene, num-
ber of hit
(alignment)

Position of
hit (strand),
distance to
TSS in bp

Length of
all CNBs
screened in
bp (FPs)

Hit-CNB:
percent-id,
gc-content

Hit: score
(cut-off),
sensitivity

Sequence of
CArG-Box

PDGF-A,
1. hit
(mousevs
rat)

Chr5:

136399972-

136399989(+),
-1185

4876 (up)
4272 (down)
(18)

46,
0.63

231 (122),
0.94

CCTTTTATGG

PDGF-A,
1. hit
(rat vs
mouse)

Chr12:

16182227-

16182244 (-),
-3189

4951 (up)
4441 (down)
(19)

46,
0.43

224 (129),
0.92

CCTTTTATGG

Table 4.3: This table displays detailed information on the CArG-boxes of candidat
genes. For each gene, the hits found in each species are listed. Double hori-
zontal lines separate different species.
The first column indicates the number of the hit in the putative target gene for
the given species. The alignment is shown in parentheses, with the screened
species printed in bold. As far as possible, the hits obtained by alignments of
rodent/human sequences are listed.
The position of the hits is given in the second column in absolute chromo-
somal coordinates. The distance relative to the TSS is also shown. In this
context, a minus (-) stands for an upstream position of the CArG-box relative
to the TSS and a plus (+) for a position downstream of the TSS. It is of note
that start and end position refer not to the CArG-box but to the motif encoded
in the matrix used for screening (M00810).
In the third column, the total length of the sequence screened for the given
gene is shown, separated in the length of the up- and downstream region. In
parentheses, the number of expected false positives with the chosen probabil-
ity of αn = 0.05 is also listed.
The first number in the fourth column describes the degree of conservation
of the CNB where the hit was found (identical bases in percent), whereas the
second number represents its gc-content. This gc-content was used to cal-
culate the cut-off score, which is given in the fifth column in parentheses.
Becauseαn was fixed at 0.05, the selectivity is constant (0.95).

Table 4.3. demonstrates that increasing gc-content improves sensitivity. In a region
with high gc-content, it is easier to recognize the CArG-box with its gc-content of
0.4. Consequently, the threshold can be decreased leading to a reduced loss of true
instances. The same holds for low gc-contents (below 0.4), which were not observed in
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the CNBs investigated.

In Figure 4.6. the signal and background score distributions are shown, which were
used to calculate the cut-off score dependent from the given gc-content.

Figure 4.6: The signal score distribution is colored green, whereas the background distribution
is shown in red. The score of the hit (found in murine alpha actinin) is marked by a blue vertical
line, the cut-off score by a black one.

CArG-boxes were also found in the genes helicase p68, ks-1, tdag51, ODC-1 and
jak-1, but only in rodents. The absence of these CArG-boxes in the human genes might
be either due to differences in the biology of humans and rodents or due to the fact
that they are false positives. Because of the latter reason, these CArG-boxes are not
discussed in detail.

In Figures 4.7-4.11, each promising target gene is shown in its genomic context. In
these Figures, the CNBs are displayed as green bars. The gene as predicted by Ensembl
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is shown together with its exons (orange boxes), introns (black lines) and different
transcripts (if more than one exist). Surrounding genes are also shown together with
their transcripts. Genes and transcripts are labeled with their Ensembl-ID. The arrow
indicates whether the gene is positioned on the plus or minus strand. Below the green
CNBs, the position of the hits is marked by small black boxes. The scales above and
below the genes give the absolute chromosomal coordinates.
Interestingly, in the five predicted target genes the conserved regions are scattered over
the whole sequence range and not centered near the TSS.

Of the three known SRF targets (junB, cpg21, PDGF-A), two were found to have
CArG-boxes in all three species. In PDGF-A, the CArG-box is detected in rat and
mouse, but not in human. Since the promoter region of the human PDGD-A was pub-
lished [LIN ET AL . 92], an attempt was made to map its CarG-box onto the human
genome with the blat program provided by the UCSC genome browser. The reason
for the failure of this mapping is discussed in section 4.4.

4.3.4 Detection of SREs

In order to test whether predicted CArG-boxes belong to SREs, short regions flanking
the CArG-boxes were screened for Ets motifs. The result of this screen is given in Table
4.4.

Gene Species, num-
ber of predicted
CArG-box

Ets matrices
(score)

Position of hit
(strand), dis-
tance to CArG-
box in bp

Sequence

Alpha
actinin

Human,
2. CarG-box

M00339 (8.3) 43842368-
43842382 (-),
+51

GGAGGAAGTTTT

GCA

JunB Mouse,
upstream
CarG-box

1) M00341
(7.95)
2) M00180
(9,7)

1) 84255717-
84255728 (+),
+13
2) 84255717-
84255726 (+),
+13

1)ACAGGAAGAGGT

2)ACAGGAAGAG

JunB Rat, upstream
CarG-box

1) M00341
(7.8)
2) M00108
(9.7)

1) 24834882-
24834893 (-),
-13
2) 24834884-
24834893 (-),
-13

1)ACAGGAAGAGGT

2)ACAGGAAGAG

83



4 Screening for Serum Response Factor Targets

Gene Species, num-
ber of predicted
CArG-box

Ets matrices
(score)

Position of hit
(strand), dis-
tance to CArG-
box in bp

Sequence

JunB Human,
upstream
CarG-box

1) M00341
(9.15)
2) M00108
(10.7)

1) 12761748-
12761759 (-),
-13
2) 12761750-
12761759 (-),
-13

1)ACAGGAAGAGGT

2)ACAGGAAGAG

Table 4.4: Ets-sites within a 50 bp distance to the given CArG-boxes are listed. In the
third column, the matrices that detected an Ets-site are shown together with
the scores of their hits.
The position of the Ets-sites in absolute chromosomal coordinates is dis-
played in the fourth column. If the Ets-site is positioned upstream relative
to the CArG-box, the relative distance is given together with a minus (-),
otherwise with a plus (+).

Ets screening failed to detect new Ets motifs near the CArG-boxes of the putative
SRF target genes. The known Ets-site of junB was verified, whereas the hit found in
human alpha actinin is not conserved and therefore doubtful.
It is of note that in junB CArG-box and Ets motif have the same orientation, even if
it is opposed to the orientation of the gene. (The orientation of the CArG-box could
be determined although it is nearly palindromic, because the matrix used for screening
not only covers the CArG-box but also surrounding nucleotides. Therefore, slightly
different scores were obtained for CArG-boxes on different strands.)
It can be derived from Table 4.3 and 4.4 that the order of CArG-box and Ets-site is fixed
in junB, with the Ets-site upstream of the CArG-box with regard to the TSS. This order
is also observed in mcl-1, c-fos and two of the three SREs in egr-1 (Table 4.1).
Another striking fact is that not the Elk-1 matrices but the matrices for the related Ets
family members GA-binding protein and nuclear respiratory factor 2 detected the junB
Ets-site.
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4.3 Results

Figure 4.7: The genomic context of alpha actinin is shown for all three species (from top to
bottom: rat, human, mouse). Green bars represent CNBs, orange bars exons and the black boxes
below the CNBs the hits.
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4 Screening for Serum Response Factor Targets

Figure 4.8: The genomic context of cpg21 is shown for all three species (from top to bottom:
rat, human, mouse). Green bars represent CNBs, orange bars exons and the black boxes below
the CNBs the hits. The two hits are positioned so close to each other that only one hit can be
seen on the picture.
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4.3 Results

Figure 4.9: The genomic context of junB is shown for all three species (from top to bottom: rat,
human, mouse). Green bars represent CNBs, orange bars exons and the black boxes below the
CNBs the hits. It is of note that the neighbor gene downstream from junB is antioxidant enzyme
AOE372, which is also a member of cluster B.
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4 Screening for Serum Response Factor Targets

Figure 4.10: The genomic context of MKP-3 is shown for all three species (from top to bottom:
rat, human, mouse). Green bars represent CNBs, orange bars exons and the black boxes below
the CNBs the hits.
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4.3 Results

Figure 4.11:The genomic context of PDGF-A is shown for all three species (from top to bottom:
rat, human, mouse). Green bars represent CNBs, orange bars exons and the black boxes below
the CNBs the hits. It is of note that human PDGF-A is overlapped by an unknown long gene
(Ensembl-ID ENSG00000197461).
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4 Screening for Serum Response Factor Targets

4.4 Discussion

Problems of the Annotation Procedure
Large gaps between the start of translation and the start of transcription as given by the
EPD can occur [DIETERICH ET AL. 02]. These regions could contain TFBS, but were
not investigated in the present study. Therefore, TFBS positioned in this region would
be missed.

Another issue is the exact position of the TSS. The TFBS screen presented in this
work is based on Ensembl TSS definitions and does not take into account alternative
TSS given by other sources. As has been noted by Suzuki et al. [SUZUKI ET AL . 01],
there might be no fixed TSS at all. For future screening, a sequence region derived from
promoter databases rather than a single base pair should be used as TSS.

Disturbingly, mapping of the PDGF-A CArG-box onto the human genome failed.
This might be explained by the fact that human PDGF-A is positioned on a contig
(7_NT_079516) that is currently not included in chromosome 7 and therefore not
detectable with the UCSC genome browser.
Although the position of PDGF-A in the human genome is unknown, the sequence itself
is known. Therefore, it is problematic that the CArG-box described in [LIN ET AL . 92]
could not be found. This could be due to either the prediction process (false negative)
or due to differences in the sequence described by Lin et al. and published in Ensembl.

An additional problem is the filtering step, which was introduced to reduce the
amount of detected hits. From all hits found, only those containing the classical CArG-
box (CC(A/T)

6
GG) are listed in section 4.3.3. Therefore, the screening procedure

consisted of two steps: First, hits were detected using a matrix model. From the number
of significant hits thus obtained, some were chosen according to biological knowledge,
in the hope to reduce the number of false positives. This knowledge consists of
site-directed mutation studies [MIANO 03] and the crystal structure of the complex
[M O ET AL. 01], which show that only small deviations from the classical motif are
possible.
Among the discarded hits, a deviating CArG-box found downstream of the human
junB gene is especially interesting. It is conserved in mouse and rat with CArG-boxes
matching the motif perfectly. This CArG-box seems to represent a functioning,
deviating SRF-binding site. Due to the filtering step, other deviating but biological
active CArG-boxes might be missed.

Another interesting matter is the orientation of CArG-box and Ets motif. Prediction
of the orientation of the (nearly) palindromic CArG-box is only possible if surrounding
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4.4 Discussion

nucleotides are taken into account, which introduce a slight difference between scores
on the plus and minus strand.
If the order of both motifs were fixed, the orientation of the SRE could be determined
by the orientation of the Ets motif. However, at least in egr-1 one SRE is known that
deviates from the order observed in the other SREs described in this chapter. Given
these facts it is currently not possible to predict the relative orientation of CArG-box
and Ets-motif with certainty.

Candidate SRF Targets
Analysis of cluster B revealed a number of putative SRF targets. Clearly, this cluster is
enriched with SRF target genes, since three out of 25 genes are known SRF targets.
These three genes (PDGF-A, junB and cpg21) provide a positive control for the method.
If they had not been found, this would have pointed to an unfavorable parameter choice,
allowing too many false negatives.

Alpha actinin
Three CArG-boxes were found in conserved regions in the first intron of alpha actinin
for all three species investigated. Nonetheless, the biological relevance of these CArG-
boxes is doubtful. Because alpha actinin is long, the number of expected false positives
in the sequence is high. To get an idea about the importance of the CArG-boxes in
alpha actinin, the investigation of their conservation in more distantly related species
would be helpful.

Cpg21
As described above, cpg21 was demonstrated to be an SRF target by Tullai et al.
and therefore is one of the positive controls. Unfortunately, these authors do not
comment on the CArG-boxes in cpg21 in detail. This target is exceptional for having
two CArG-boxes placed next to each other without an intermediate nucleotide. The
CArG-boxes are well conserved in mouse, rat and human and are situated upstream
near the TSS. A serum response element might be missing, as no Ets motif could be
found.

JunB
JunB, a well known SRF target, is another positive control. The upstream CArG-
box as well as the Ets motif described in the literature could be detected in all three
species. The downstream CArG-box was found in both rodents and a deviated down-
stream CArG-box in human. Ets motif screening detected the known Ets sites in all
three species (sometimes on the opposite strand).
Interestingly, antioxydant enzyme, another member of cluster B, is situated next to
junB, so the downstream CArG-box of junB could as well be assigned to the down-
stream region of antioxydant enzyme. Functionality of the downstream CArG-box

91



4 Screening for Serum Response Factor Targets

for murine junB was demonstrated by Perez-Albuerne and colleagues. It would be
interesting to know whether expression of antioxydant enzyme is affected by a knockout
of this CArG-box.

MKP-3
MKP-3 is the best candidate predicted by this survey. Each of the three species
investigated contains two CArG-boxes about 2000 bp away from the TSS. MKP-3
was missed by Tullai et al. because these authors restricted their screen to a window
size of 1000 bp upstream of the promoter. Interestingly, two other members of the
DUSP-family, namely cpg21 and DUSP2, are already known or predicted SRF targets.
It is of note that MKP-3 was not found in the knockout experiment performed by
Philippar and colleagues. Its expression level might have been too low to detect
differential expression in the chosen cell line.

PDGF-A
As has been mentioned before, hits could be found only in rat and mouse, al-
though human PDGF-A is a known SRF target. The two rodent hits are situated
1000-2000 bp upstream of the TSS. In human, the PDGF-A gene is overlapping
with another gene with the Ensembl ID ENSG00000197461 (see Figure 4.11). No
information concerning the function of this gene was available. It is no longer present
in the newest version of Ensembl.
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5 Conclusion

In the course of this work, data derived from a microarray experiment was clustered
using a number of different methods. In addition, one cluster was screened for the
presence of SRF targets. As a result, four clusters were obtained and MKP-3 was
predicted as a new SRF-candidate.

The enrichment of cluster B with known SRF targets points to the biological
relevance of the clusters found and supports the assumption that cluster analysis can
detect co-regulated genes.
It is of great interest that conserved CArG-boxes in MKP-3 were detected, since this
gene is part of the negative feedback loop regulating MAPK. If MKP-3 were indeed
up-regulated by SRF, this would provide a link between Ras signaling and MAPK
inactivation by DUSPs.

Due to time constraints, a number of interesting questions could not be answered.
First, the question arises whether members of the other clusters share binding sites for
another transcription factor. Then, it would be useful to test either the given gene set or
a number of randomly chosen genes for the presence of CArG-boxes in order to confirm
over-representation of CArG-boxes in cluster B.
It would be also of interest whether human and rodents really represent the optimal
evolutionary distance for the investigation of SRF targets or whether more distantly
related species would be more suitable.
Another point is the optimization of parameters for clustering (SOM) and weight matrix
scan (score threshold). These parameters were chosen according to recommendations
in the literature, but it is not clear whether they are the best choice for the data set.

Outlook
In the next step, knockout of SRF in the IR-4 cells for example with siRNA could
indicate whether MKP-3 indeed is a SRF target. If up-regulation of MKP-3 in SRF
deficient cells fails, this would give the first experimental evidence for the involvement
of SRF in MKP-3 regulation.

Another way to confirm putative SRF targets on a large scale is the ChIP-on-Chip
analysis, which combines chromatin immunoprecipitation with microarrray technology.
An immunoprecipitation-based approach could also test whether Ets proteins like Elk-1
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can bind to the MKP-3 promoter, which would point to the formation of a ternary
complex.

Recently, the results of a new mapping of human transcription start sites were pub-
lished [KIM ET AL . 05]. The authors obtained 12,150 binding sites of the transcription
factor IID by performing ChIP-on-chip analysis of the whole genome. These were
matched to the 5’-ends of known transcripts stored in RefSeq, GenBank and Ensembl.
Only 83 % of them were found within 500 bp of the TSS given by these databases. This
new data set could not be taken into consideration in the current work, but can be used
to improve gene models and to enhance accuracy of prediction in future transcription
factor target screenings.

In his model of the MAPK cascade, Nils Blüthgen included the negative feedback
loop exerted by the MKPs (Blüthgen, in preparation). The data derived from this model
fit well the observed behavior of Ras, P-ERK and MKP-3 as monitored by Western
blots and the microarray experiment. However, it could be seen that nuclear MKPs
(MKP-1 in cluster A, cpg21 in cluster B) and cytosolic MKPs (MKP-3, MKP-4, both
in cluster B) behave differently. Therefore, an extension of this model with respect to
the different MKPs would be interesting.

In experiments comparing gene expression in immortalized with those in Ras-
transformed rat fibroblasts, about 244 genes were found to be differentially expressed
[ZUBER ET AL. 00].
However, the microarray experiment investigated in this study detected only 82 signif-
icantly differentially expressed genes. In addition, only a few of these genes exceed
twofold differential expression. Therefore, further microarray experiments might not
only verify the present results but also allow the analysis of additional genes absent in
the current data set.
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A Accession Numbers

Table A lists the 82 significantly differentially expressed genes together with their ac-
cession numbers (GenBank-IDs).

Gene name Accession number

Alpha actinin U19893
antioxidant enzyme AOE372 NM_017169
Arp3 AF307852
aryl hydrocarbon receptor (AHR) NM_013149
balbc aldose reductase-related protein AF182168
BCSC-1 AF002672
CAMK-related peptide AF045469
cAMP-dependent protein kinase type II (prkar2b) M12492
cca1 AB000215
c-myc M23418
Cox2 S67722
CSF-1 M84361
cytocentrin U82623
DNA polymerase epsilon XM_216727
DOC-2; p96 Phosphoprotein U95177
E1B 19K Bcl-2 binding protein homolog AF243515
ER81 ETV1 BF524947
ESTAA199109 AA199109/CD372216
ESTAI013714 gb|AI013714
ETF BF555149
Fibronectin X15906
FISP-12 NM_022266
GADD153 gb|U36994
GAPDH NM_017008
Gas-6 D42148
Granulin (GRN) M97750
guanine nucleotide binding protein G-s M12673
Gu binding inhibitor of activated STAT1 XM_217188
HB-EGF L05489
helicase p68 (HUMP68) AJ010934

95



A Accession Numbers

Gene name Accession number
Hic-5 AF314960
Histone H3.3 XM_227461
hNop56 CB567043
ID1 D10862
interferon induced gene X61381
JAK1 protein tyrosine kinase 1 AJ000556
Jun X17163
JunB X54686
JunD D26307
KS1 U56732
Lot1 U72620
Lysyl oxidase S77494
Lysyl oxidase-related protein (WS9-14) AW916312
MAP-kinase phosphatase cpg21 AF013144
megakaryocyte potentiating factor NM_031658
Mkp1 X84004
Mkp3 X94185
MKP-4 XM_219711
MMP-1 (Collagenase) M60616
MMP-3 (Stromelysin-1) X02601
MMP10 (Transin-2) X05083
Mob-1 U17035
MST2 AJ001529
MUK2 NM_017198
MyoD M84176
myo-inositol monophosphatase (IMP) U84038
Nras rat NM_080766
nucleoside diphosphate kinase puf gb|M55331
ODC1 NM_012615
p15 (ink4b) BE126804
P5 protein X79328
p53 L07909
P-cadherin AW144786
PDGF Z14120
PEBP2a1 AB025797
Phosducin-like protein (PhLP) L15354
poly ADP-ribose glycohydrolase AB019366
polyhomeotic mRNA BF555212
PP-1 D00859
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Gene name Accession number
Rap1B GTP-binding protein U07795
R-esp2 L14463
RhoA XM_228860
Sex comb on midleg homolog AW140736
single strand DNA-binding protein AF121893
Syndecan-1 NM_013026
TDAG51 NM_017180
thrombospondin 1 BE127004
TIMP-2 S72594
Tsc36 NM_024369
USF-2 NM_031139
VD3R NM_017058
WT1 NM_031534
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B Cluster Members

Tables B.1-B.4 list the cluster members of clusters A-D together with their GO
terms. GO terms were obtained with the help of the freely available software EASE
(http://david.niaid.nih.gov/david/ease.htm), which allows local annotation of gene lists
[HOSACK ET AL. 03].
Some genes, whose GO terms could not be retrieved with EASE, were annotated using
the Bioinformatic Harvester provided by EMBL (http://harvester.embl.de). If no infor-
mation could be obtained for a certain gene, the corresponding field is left empty.
It is of note that of the 25 genes in cluster B only 24 could be screened for SRF targets,
since the Ensembl-ID for polyhomeotic mRNA was unavailable.

Table B.1:Members of cluster A (37 genes)

Genes in cluster A
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

aryl hydro-
carbon recep-
tor (AHR)

-apoptosis
-cell cycle
-regulation of
transcription
-response to
stress
-signal trans-
duction
-xenobiotic
metabolism

-cytoplasm
-transcription
factor complex

ligand-dependent
nuclear receptor
activity
-protein binding
transcription
factor activity

BCSC-1 negative regulation
of cell cycle

tumor suppressor

cAMP dependent
protein kinase
(prkar2b)

-protein phos-
phorylation
-signal transduction

-cAMP-dependent
protein kinase
complex

-cAMP binding
-cAMP-dependent
protein kinase
regulator activity
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Genes in cluster A
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

cca1 -tRNA processing mitochondrion -ATP binding
-tRNA adenylyl-
transferase activity
magnesium ion
binding

c-myc -cell cycle arrest
-iron ion homeo-
stasis
-regulation of
transcription

nucleus -protein binding
-transcription
factor activity

CSF-1 -macrophage diffe-
rentiation
-positive regulation
of cell proliferation
-hemopoiesis

integral to
membrane

macrophage colony
stimulating factor
receptor binding

cytocentrin -mitosis
-small GTPase
mediated signal
transduction
-transport

membrane -GTPase activator
activity

DNA polymerase
epsilon

DNA replication nucleus -DNA binding
-epsilon DNA
polymerase activity
-transferase activity

ER81/ETV1
ESTAI013714
ETF
Gu binding
inhibitor of
activated STAT1

-JAK-STAT cascade
-regulation of
transcription
-signal transduction
-ubiquitin cycle

nucleus -zinc ion binding
-DNA binding
-transcription
corepressor activity
-ATP-dependent
RNA helicase
activity

DOC-2 cell proliferation
growth arrest spe-
cific 6 (Gas6)

extracellular space apoptosis inhibitor
activity
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Genes in cluster A
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

Hic-5 -positive regulation
of transcription

intracellular -androgen receptor
binding
-transcription co-
activator activity
-zinc ion binding

Inhibitor of DNA
binding 1
(ID1)

-negative regulation
of transcription
-regulation of
angiogenesis

transcription
factor complex

-DNA binding
-protein binding

Jun -regulation of
cell cycle
-regulation of
transcription

nuclear chromosome-transcription
factor activity

Lysyl oxidase
related protein
(WS9-14)

-protein modification
-aging
-cell adhesion

-extracellular space
-membrane

-protein-lysine
6-oxidase activity
-scavenger receptor
activity
-copper ion binding
-electron transporter
activity

megakaryocyte
potentiating
factor

cell adhesion membrane oxidoreductase ac-
tivity

Mkp1 -cell cycle
-intracellular sig-
naling cascade
-protein dephos-
phorylation

nucleus MAP kinase phos-
phatase activity

MST2 -apoptosis
-protein phos-
phorylation
-signal trans-
duction

-cytoplasm
-protein kinase
CK2 complex

-ATP binding
-protein kinase
CK2 activity
-protein-tyrosine
kinase activity

MUK2 -JNK cascade
-protein phos-
phorylation

-cytosol
-focal adhesion

-ATP binding
-MAP kinase kinase
kinase activity
-protein-tyrosine
kinase activity
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Genes in cluster A
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

myogenic diffe-
rentiation 1
(MyoD)

-cell diffe-
rentiation
-myogenesis
-regulation of
transcription

-transcription
factor complex

-transcription
factor activity
-enhancer binding
-protein binding

myo-inositol
monophosphatase
(IMP)

-carbohydrate
metabolism
-phosphate
metabolism
-phosphatidylino-
sitol biosynthesis
-signal transduction

extrachromosomal
circular DNA

-inositol-1(or 4)-
monophosphatase
activity
-magnesium ion
binding

Nras -RAS protein
signal transduction
-regulation of
cell cycle

-cytoplasm
-membrane fraction
-plasma membrane

-ATP binding
-GTP binding
-RAS small mono-
meric GTPase
activity
-protein binding

p15(ink4b) -regulation of
cyclin dependent
protein kinase
activity
-cell cycle arrest
-negative regulation
of cell proliferation

-nucleus
-cytoplasm

-cyclin-dependent
protein kinase
inhibitor activity

P-cadherin -protein binding
-calcium ion
binding

-integral to
membrane

-homophilic cell
adhesion
-sensory perception
-visual perception
-cell adhesion

PEB2a1
phosducin-like
protein (PhLP)

-electron transport
-phototransduction
-signal transduction
-vision

cytosol -electron trans-
porter activity
-regulator of
G-protein sig-
naling activity
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Genes in cluster A
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

poly ADP-ribose
glycohydrolase

small GTPase
mediated signal
transduction

cytoplasm poly(ADP-ribose)
glycohydrolase
activity

Sex comb on
midleg homolog

-morphogenesis
-regulation of
transcription

nucleus -transcription
factor activity

sequence-specific
single-stranded
DNA-binding
protein

-regulation of
transcription

nucleus -single-stranded
-DNA binding
-transcription
regulator activity

tissue inhibitor
of metallo-
proteinase 2
(TIMP-2)

-extracellular matrix
-extracellular space

-enzyme activator
activity
-metalloendo-
peptidase
inhibitor activity

Tsc36 transport extracellular space -calcium ion
binding
-heparin binding

USF-2 -regulation of
transcription

-transcription
factor complex

-DNA binding
-transcription
factor activity
-protein binding

vitamin D receptor
(VD3R)

-calcium ion
homeostasis
-induction of
apoptosis by
hormones
-regulation of
transcription
-skeletal develop
ment

-extrachromosomal
circular DNA
-nuclear chromo-
some

-steroid hormone
receptor activity
-transcription
factor activity
-vitamin D binding
-vitamin D3
receptor activity

Wilms tumor 1
(WT1)

-eye morphogenesis
-negative regu-
lation of cell cycle
-regulation of
transcription

transcription factor
complex

-protein binding
-transcription
factor activity
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Table B.2:Members of cluster B (25 genes)

Genes in cluster B
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

alpha actinin -cell motility
-invasive growth

actin cytoskeleton -GTP binding
-actin bundling
activity
-calcium ion binding
-structural consti-
tuent of cytoskeleton

antioxydant
enzyme AOE372

-anti-apoptosis
peroxidase reaction
-response to
oxidative stress

cytoplasm -apoptosis inhibitor
activity
-electron trans-
porter activity
-peroxidase activity
-selenium binding

CAMK-related
peptide

neurogenesis microtubule associ-
ated complex

kinase activity

guanine nu-
cleotide binding
protein G-s
(Gnas)

-G-protein signaling,
adenylate cyclase
activating pathway
-energy reserve
metabolism
-response to drug

-Golgi trans cisterna
-membrane fraction

-GTP binding
-heterotrimeric
G-protein
GTPase activity
-signal transducer
activity

helicase p68 Cell growth Nucleus Hydrolase activity
ATP-dependent he-
licase activity RNA
binding

Histone H3.3 chromosome orga-
nization and bio-
genesis

-nucleus
-chromosome

DNA binding

hNop56
Janus kinase 1
(JAK1)

-intracellular
signaling
cascade
-protein phos-
phorylation

cytoskeleton -ATP binding
-protein-tyrosine
kinase activity
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Genes in cluster B
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

JunB -regulation of
cell cycle
-regulation of
transcription

-chromatin
-nucleus

-transcription co-
activator activity
-transcription co-
repressor activity

JunD -regulation of
cell cycle
-regulation of
transcription

-chromatin
-nucleus

transcription factor
activity

KRAB/zinc fin-
ger suppressor
protein 1 (KS-1)

regulation of
transcription

transcription factor
complex

nucleic acid bind-
ing

MAP-kinase
phosphatase
(cpg21)

protein dephos-
phorylation

-cytoplasm
-nucleus

-MAP kinase phos-
phatase activity

matrix metallo-
proteinase 1
(MMP1)

collagen
catabolism

-extracellular space
-extracellular matrix

-interstitial colla-
genase activity
-zinc ion binding
-calcium ion
binding

matrix metallo-
proteinase 3
(MMP3)

collagen
catabolism

extracellular matrix -calcium ion binding
-stromelysin 1
activity
zinc ion binding

MKP-3 -apoptosis
-inactivation
of MAPK
-protein dephos-
phorylation

cytoplasm -MAP kinase
phosphatase activity

MKP-4 -inactivation
of MAPK
-protein dephos-
phorylation

-nucleus
-cytoplasm

MAP kinase
phosphatase
activity

nucleoside
diphosphate
kinase puf

-CTP, GTP, UTP
biosynthesis
-negative regulation
of cell proliferation
-regulation of
transcription

microtubule -ATP binding
-nucleoside
diphosphate
kinase activity
-transcription
factor activity
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Genes in cluster B
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

ornithine decar-
boxylase 1
(ODC1)

polyamine biosyn-
thesis

mitochondrial inner
membrane

ornithine decar-
boxylase activity

p53 -damage response,
signal transduction
resulting in in-
duction of apoptosis
-negative regulation
of cell cycle
-cell differentiation
-cell aging
-nucleotide-excision
repair
-regulation of
mitochondrial
membrane
permeability
-regulation of
transcription

-nucleolus
-mitochondrion

-transcription
factor activity
-zinc ion binding
-ATP binding
-DNA strand
annealing activity
-copper ion binding
-protein binding
-nuclease activity

platelet derived
growth factor
alpha (Pdgfa)

regulation of
cell cycle

-extracellular space
-membrane

-growth factor
activity

polyhomeotic
mRNA
protein phos-
phatase 1 (PP-1)

-glycogen
metabolism
-protein dephos-
phorylation
-regulation of
protein biosynthesis

-cytoplasm
-nucleoplasm

-calcium-dependent
protein
serine/threonine
phosphatase activity

Rap1b -regulation of
cell cycle
-small GTPase
mediated signal
transduction

membrane -GTP binding
-RAS small
monomeric GTPase
activity
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Genes in cluster B
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

RhoA -protein transport
-Rho protein
signal transduction
-actin cytoskeleton
organization and
biogenesis
-positive regulation
of I-kappaB kinase/
NF-kappaB cascade
-positive regulation
of NF-kappaB-
nucleus import

-cytoskeleton
-membrane

-GTP binding
-GTPase activity
-magnesium ion
binding

T-cell death
associated gene
(TDAG51)

-embryogenesis
-morphogenesis

integral to mem-
brane

exo-alpha-sialidase
activity

Table B.3:Members of cluster C (12 genes)

Genes in cluster C
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

E1B 19K Bcl-2
binding protein
homolog

anti-apoptosis -integral to
membrane
-mitochondrion

-apoptosis activator
activity
-apoptosis inhibitor
activity

ESTAA199109
GADD153 -cell cycle arrest

-regulation of
transcription

transcription factor
TFIID complex

transcription factor
activity

glyceraldehyde-3-
phosphate
dehydrogenase
(GAPDH)

glycolysis cytoplasm phosphorylating
activity

granulin lipid catabolism extracellular space -calcium ion binding
-cytokine activity
-phospholipase A2
activity
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Genes in cluster C
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

interferon in-
duced gene
matrix metal-
loproteinase 10
(MMP10)

collagen
catabolism

extracellular matrix -stromelysin 2
activity
-zinc ion binding

Mob-1 -cell motility
-chemotaxis
-inflammatory
response
-muscle
development
-positive regulation
of cell proliferation
-protein secretion
-signal transduction

extracellular chemokine activity

Lot1 regulation of cell
cycle

transcription factor
complex

protein disulfide
isomerase-related
protein (P5)

-electron transport
-protein folding

-endoplasmic
reticulum

-electron trans-
porter activity
-protein disulfide
isomerase activity

R-esp2 -frizzled signaling
pathway
-negative regulation
of transcription

-heterotrimeric
G-protein complex
-nucleus

-protein kinase
activity
-transcription co-
repressor activity

syndecan 1 histogenesis and
organogenesis

integral to mem-
brane

cytoskeletal protein
binding

Table B.4:Members of cluster D (8 genes)

Genes in cluster D
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

actin-related pro-
tein 3 homolog
(Arp3)

cell motility Arp2/3 protein
complex

-protein binding
-structural molecule
activity
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Genes in cluster D
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

balbc aldose
reductase-related
protein

aldehyde
metabolism

extracellular space aldehyde reduc-
tase activity

Cox2 -negative regulation
of cell proliferation
-positive regulation
of cell proliferation
-prostaglandin
biosynthesis
-response to
oxidative stress

-endoplasmic
reticulum
-nuclear membrane

-oxidoreductase
activity,
acting on single
donors with
incorporation of
molecular oxygen
-prostaglandin-
endoperoxide
synthase activity

Fibronectin -acute-phase
response
-cell adhesion
-wound healing

-extracellular matrix
-extracellular space

-cell adhesion
molecule activity
-heparin binding
-oxidoreductase
activity

FISP-12 -DNA metabolism
-angiogenesis
-cell adhesion
-intracellular
signaling cascade
regulation of
cell growth

extracellular matrix -cell adhesion
molecule activity
-heparin binding
-insulin-like growth
factor binding

HB-EGF -EGF receptor
signaling pathway
-regulation of
heart rate

-extracellular space
-integral to
membrane

-growth factor
activity
-heparin binding

Lysyl oxidase
(LOX)

protein modifica-
tion

extracellular matrix -copper ion binding
-protein-lysine
6-oxidase activity
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B Cluster Members

Genes in cluster D
(abbreviation)

GO Biological Pro-
cess

GO Cellular Com-
ponent

GO Molecular
Function

thrombospondin-
1

-neurogenesis
-blood coagulation
-cell adhesion
-cell motility
-development

extracellular region -protein binding
-calcium ion binding
-signal transducer
activity
-structural molecule
activity
-endopeptidase
inhibitor activity
-heparin binding
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C Ets Matrices

Matrix-ID Consensus
sequence

Information
content in
nats

Source Database Remarks

M00340 KRCAGGAAR

TRNKT

9.54 9 compiled
binding
sequences

TRANS
FAC_
PUBLIC

c-Ets-2

M00339 RCAGGAAGTG

NNTNS

8.81 21 com-
piled bin-
ding se-
quences

TRANS
FAC_
PUBLIC

c-Ets-1

M00678 YTACTTCCTG 10.2 5 compiled
binding
sequences

TRANS
FAC

Tel-2

M00746 RNWMBAGGA

ART

8.93 8 compiled
sequences

TRANS
FAC

ELF-1

M00658 WGAGGAAG 7.22 14 com-
piled bin-
ding se-
quences

TRANS
FAC

PU.1

M00341 VCCGGAAGN

GCR

9.75 12 com-
piled bin-
ding se-
quences

TRANS
FAC_
PUBLIC

GA bind-
ing protein

M00108 ACCGGAAGNG 8.63 7 compiled
binding
sequences
from 3
genes

TRANS
FAC_
PUBLIC

nuclear
respira-
tory factor
2

M00531 YRNCAGGAAG

YRNSTBDS

11.48 6 genomic
binding
sites

TRANS
FAC

new ets-
related
factor 1a
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C Ets Matrices

Matrix-ID Consensus
sequence

Information
content in
nats

Source Database Remarks

M00771 ANNCACTTC

CTG

7.24 48 com-
piled se-
quences

TRANS
FAC

Ets, Q4

M00971 ACTTCCTS 6.04 81 com-
piled
sequences

TRANS
FAC

Ets, Q6

M00743 CMGGAAGY 7.76 8 compiled
sequences

TRANS
FAC

c-Ets-1

M00655 ACWTCCK 6.79 10 com-
piled bin-
ding se-
quences

TRANS
FAC

PEA3

MA0098 NWTCCD 4.82 SELEX JASPAR c-ETS
M00025 NNNNCCGGAA

RTNN

6.77 31 selected
sites

TRANS
FAC_
PUBLIC

Elk-1,
single
binding
sites in
variable
distances
to SRF-
binding
sites

M00032 NCMGGAW

GYN

7.07 SELEX TRANS
FAC_
PUBLIC

c-Ets-
1(p54)

M00074 NNACMGGA

WRTNN

5.96 SELEX TRANS
FAC_
PUBLIC

c-Ets-
1(p54)
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Matrix-ID Consensus
sequence

Information
content in
nats

Source Database Remarks

M00007 NAAACMGGA

AGTNCVH

9.06 binding
elements
from 4
genes

TRANS
FAC_
PUBLIC

Elk-1

Table C.1: The first column lists the matrix-IDs as stored in T-reg. The consensus se-
quence displayed in the second column gives for each position the most fre-
quent nucleotide (B = C/G/T, D = A/G/T, H = A/C/T, K = G/T, M = A/C,
N = any nucleotide, R = A/G, S = G/C, V = A/C/G, W = A/T, Y = C/T). In
the third column, the information content of the matrices based on the nat-
ural logarithm is shown. The fourth column indicates the data on which the
matrix is based, SELEX stands for artificial binding site selection. The sixth
column contains the Ets protein which binds to the described Ets-site.
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