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Summary
Co-expressed genes often code for proteins that are involved in a common biological
function such as a metabolic pathway. Tools that can detect metabolic pathways based
on groups of co-expressed genes would be of value for the interpretation of microarray
data.

The aim of this final work was to develop such a tool, the PathwayBuilder, which
receives a number of input enzymes and connects best the reactions they catalyze in a
given metabolic graph under the given constraints. The output is a graph representing
the inferred metabolic pathway. This approach differs from pathway mapping, because
it allows new combinations of known reactions and compounds to occur.

The PathwayBuilder requires seeds (compounds, reactions or groups of reactions)
and a metabolic graph to perform pathway inference. To obtain the seeds from a
group of co-expressed genes, the enzymes among them need to be identified and
linked to their reactions. This is achieved by using the EC number annotation of
the input enzymes. There are different ways to represent metabolic data in graphs.
In this work, compounds and reactions from KEGG have been collected into a
directed, bipartite and weighted graph. Ubiquitous compounds are avoided by us-
ing a new approach introduced by Didier Croes, which relies on compound connectivity.

The novelty of the PathwayBuilder in comparison to previous pathway inference
tools is that it can handle a set of seeds. Pathway inference with two seeds is successful
for most pathways [CROES ET AL. 05], but fails for some as for example the purine
biosynthesis pathway in E. coli. For this reason this pathway was chosen to test the
PathwayBuilder. It could be shown that additional seed nodes increased the accuracy of
its inference.

The next step will be to improve and to validate the PathwayBuilder on a number of
annotated pathways before applying it to microarray data.
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Definitions
A number of definitions important for this work are given below. In brackets, alter-

native names for the defined terms are listed.

Graph
A graph G is a finite nonempty set of objects called vertices (or nodes) together with
a (possibly empty) set of unordered pairs of distinct vertices of G called edges. (cited
from [CHARTRAND & LESNIAK 96], words in italics added by the author)

Directed graph (digraph)
A directed graph or digraph D is a finite nonempty set of objects called vertices (or
nodes) together with a (possibly empty) set of ordered pairs of distinct vertices of D
called arcs or directed edges. (cited from [CHARTRAND & LESNIAK 96])

Bipartite graph
A graph is k-partite, k ≥ 1, if it is possible to partition V(G) (the set of vertices of
graph G) into k subsets V1,V2, ...,Vk, such that every element of E(G) (the set of edges
of graph G) joins a vertex of Vi to a vertex of Vj, i 6= j. For k = 2, such graphs are called
bipartite graphs. (cited from [CHARTRAND & LESNIAK 96], words in italics added by
the author)

Connectivity (degree)
The outdegree of a vertice v of a digraph D is the number of arcs of D that are ad-
jacent from v. The indegree of v is the number of arcs of D adjacent to v. The de-
gree of a vertice v in D is defined as the sum of its indegree and outdegree. (after
[CHARTRAND & LESNIAK 96])

Neighborhood
The neighborhood N(v) of a vertex v in a graph G is the set of all vertices of G that are
adjacent to v. (cited from [CHARTRAND & LESNIAK 96]). An element of N(v) is called
neighbor node or neighbor.

Path
For two nodes u and v in a graph G, a u−v walk of G is a finite, alternating sequence of
nodes and edges, beginning with node u and ending with node v. A u−v path is a u−v
walk in which no node is repeated. (after [CHARTRAND & LESNIAK 96])

Metabolic graph
The metabolic graph is defined in this work as a connected, bipartite, directed graph
consisting of compounds and reactions.

Metabolic pathway (pathway)
A metabolic pathway is a subgraph of the metabolic graph. Sometimes, this term
is abbreviated to pathway. Metabolic pathways described in textbooks or metabolic
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databases are referred to as annotated or reference pathways.

Seed node (seed)
A seed node is an element of the compound node set or the reaction node set of the
metabolic graph. It is given as input to the PathwayBuilder.

Shortest path problem
In graph theory, the shortest path problem is the problem of finding a path between two
vertices such that the sum of the weights of its constituent edges is minimized. (after:
http://en.wikipedia.org/wiki/Shortest_path_problem )

K shortest path problem
The k shortest paths problem is to list the k paths connecting a given source-destination
pair in the digraph with minimum total length. (cited from [EPPSTEIN 94]) A k shortest
path algorithm is an algorithm that solves the k shortest path problem.

EC number
A systematic classification of enzymes was introduced by the Enzyme Commission
1961 and is based on the chemical reactions they catalyze. The assignment of code
numbers (EC numbers) to enzymes follows this classification system. EC numbers
contain four elements, separated by points, with the following meaning:

1. The first number shows to which of the six main divisions (classes) the enzyme
belongs.

2. The second figure indicates the subclass.

3. The third figure gives the sub-subclass.

4. The fourth figure is the serial number of the enzyme in its sub-subclass.

(after: Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology, http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html)
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Abbreviations

E. coli Escherichia coli

FN False Negative

FP False Positive

GDL GraphDataLinker

IQL Igloo Query Language

KEGG Kyoto Encyclopedia of Genes and Genomes

PGDB Pathway/Genome DataBase

S. cerevisiae Saccharomyces cerevisiae

TN True Negative

TP True Positive
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1 Introduction

The development of high-throughput techniques such as microarrays enabled monitor-
ing of gene expressions at a genomic scale. Thus, large amounts of data are produced
that need processing and interpretation to derive hypotheses from them.

One approach commonly applied to the interpretation of microarray data has been
termed "Guilt by association" [QUACKENBUSH 03]. It states that co-expressed genes
(genes whose expression values are either increased simultaneously or decreased simul-
taneously with respect to a reference) are likely to contribute to a common biological
function such as a pathway. Given the validity of this approach, microarray data could
be used to infer metabolic pathways from groups of co-expressed genes.

1.1 Summary of the project

1.1.1 Context of the �nal work

This work is a preparation to my PhD subject, which consists of the inference of
metabolic pathways from sets of co-expressed genes obtained from microarray experi-
ments. This work started in January 2006. During this period, I focused on the extension
of an existing k-shortest path finding algorithm (backtracking with constraints) to accept
multiple seeds as input. I implemented a first version of the PathwayBuilder and applied
it to a few study cases.

1.1.2 Goal

The goal of the final work is to develop a tool, termed PathwayBuilder, which performs
the inference of metabolic pathways given a metabolic graph and a set of enzyme-coding
genes.
Thus, this work strives to answer the following question: Given a set of co-expressed
genes, which pathway(s) could the enzymes they code catalyze together?
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1 Introduction

Figure 1.1: Summary of the strategy that is applied to infer metabolic pathways from groups of
co-expressed genes.
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1.2 Representation of metabolic data

1.1.3 Strategy

The task can be divided into the following steps: first, the co-expressed genes are ob-
tained from the microarray data set. Next, the enzymes among those genes are identified
using available annotation. Then, an extension of a k shortest path algorithm, the Path-
wayBuilder, is used to infer pathways from the reactions catalyzed by those enzymes.
The PathwayBuilder returns a pathway that connects as many of the given seed reactions
as possible under the given criteria. Figure 1.1 summarizes the procedure.

1.1.4 Applications

The main application of the PathwayBuilder will be to ease the interpretation of
microarray data with respect to metabolic pathways. In contrast to available tools
it does not rely on a matching of the sets of co-expressed enzymes to pre-defined
pathways, but infers pathways from a metabolic graph. Those inferred pathways might
be identical to known pathways, they might be variants of known pathways or they
might even be unknown pathways composed of known reactions and compounds.

In addition, the PathwayBuilder could be used in metabolic engineering to suggest
possible pathways for the biosynthesis of a desired compound or the biodegradation of
an unwanted compound. With respect to the prediction of biodegradation, the ability
of the PathwayBuilder to merge metabolic information from several organisms is
particularly useful, since usually more than one organism is involved in biodegradation
pathways.

Furthermore, the PathwayBuilder could be extended to avoid solution paths contain-
ing given compounds or reactions. If pathway inference is then performed, alternative
pathways without those compounds/reactions might be found. These alternative
pathways might help to predict or explain the effects of enzyme knockouts on the
metabolism of the investigated organism.

1.2 Representation of metabolic data

Success of pathway inference depends on metabolic databases and the choice of repre-
sentation of metabolic data. In the following, two metabolic databases important for this
work a shortly presented and different ways of metabolic data representation as graphs
are summarized.
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1 Introduction

1.2.1 Representation of metabolic data in databases

A large number of metabolic databases has been published in recent years (a compari-
son of a selection of them is given in [WITTIG & DE BEUCKELAER 01]). They can be
divided into two different categories according to Karp [KARP 01]: Metabolic pathway
databases and metabolic pathway/genome databases (PGDBs). The former describe
metabolic pathways, their reactions, enzymes and compounds, whereas the latter in-
tegrate genomic information with pathway information. Thus, PGDBs allow to link
enzymes to the reactions they catalyze, which is crucial for the current work.

Two PGDBs (more strictly: collections of PGDBs for several organisms) are relevant
for this work, namely KEGG [KANEHISA ET AL. 02] and BioCyc [KARP ET AL. 05].
KEGG stores metabolic pathways in form of maps. The maps show merged metabolic
data from all annotated organisms. On the maps, compound names and clickable EC
numbers are displayed, which give details on the enzyme(s) that can perform the chem-
ical reaction described by the EC number and list the reactions associated to this EC
number. If one organism is selected from a list of organisms, organism-specific EC
numbers on the maps are colored in green. If no organism is selected, a map without
highlighted EC numbers is shown, which is also called reference map. A query form
allows searching for objects (gene names, KEGG reaction ids, EC numbers or KEGG
compound ids) in the maps.
In contrast to KEGG, BioCyc stores a number of annotated organism-specific metabolic
pathways. These pathways can be queried for gene names, RNA names, protein names,
pathway names, EC numbers, reaction names and compound names. In addition, Bio-
Cyc gives literature references for and comments on the pathways. Its pathway display
is more flexible than the KEGG maps (different degrees of detail) and its pathway tools
allow cross-species comparison.

Both databases are based on different annotation efforts. Thus, they can both be used
for independent validation of the PathwayBuilder.

1.2.2 Representation of metabolic data as graphs

In biochemistry textbooks, metabolic pathways are usually depicted as a sequence of
reactions with their main educts (substrates) and products connected by arrows, which
represent the direction of the reaction. The arrows are often labeled with the name of
the enzyme catalyzing the reaction. Often, side educts and products (compounds that
do not take part in the next reaction) are included and formatted in a different way than
the main educts and products.

Maps have been published that link these pathways to a network, thereby providing
an overview of known metabolism (for example the Roche Applied Science "Biochem-
ical Pathways" wall chart, compiled by Gerhard Michal, digital version available at
http://ca.expasy.org/tools/pathways/).
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1.2 Representation of metabolic data

From this wall chart it can be seen that borders between pathways cannot easily be
defined. Pathways do not necessarily reflect biological units and the definition of some
is arbitrary. A representation of metabolism as a network is therefore more appropriate
for pathway analysis and inference. Graphs have been widely used in the literature to
achieve this.

In Table 1.1 an (incomplete) overview on different representations of metabolic net-
works as graphs in the literature is given.

Authors Nodes Arcs Di-
rected

Bi-
par-
tite

Weigh-
ted

Treatment of
ubiquitous
compounds

Remarks

[FELL & WAGNER 00] com-
pounds

reac-
tions

no no no exclusion small world
property
stated
for E. coli
metabolic
network

[JEONG ET AL. 00] set 1:
com-
pounds
set 2:
reac-
tions

educt-
reac-
tion and
reac-
tion-pro-
duct rela-
tionships

yes yes no none scale freeness
of small
world pro-
perty stated
for metabolic
networks

[KÜFFNER ET AL. 00] places:
com-
pounds,
tran-
sitions:
reac-
tions

connec-
ting
places
with
tran-
sitions
and vice
versa

yes yes no exclusion
by con-
straints

constrained
pathway
enumeration
on Petri nets

[FORST & SCHULTEN 01] reac-
tions

com-
pounds

no no yes none distances of
metabolic net-
works based
on sequence
information
calculated
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1 Introduction

Authors Nodes Arcs Di-
rected

Bi-
par-
tite

Weigh-
ted

Treatment of
ubiquitous
compounds

Remarks

[VAN HELDEN ET AL. 01] set 1:
com-
pounds,
set 2:
reac-
tions

educt-
reac-
tion and
reac-
tion-pro-
duct rela-
tionships

yes yes no exclusion pathway
inference
given a set
of seed nodes

[GOESMANN ET AL. 02] com-
pounds

reac-
tions

yes no no avoided by
using anno-
tated path-
ways

pathway
analysis

[SIRAVA ET AL. 02] set 1:
com-
pounds,
set 2:
reac-
tions

educt-
reaction
and
reaction-
product
rela-
tion-
ships

yes yes yes exclusion metabolic
pathfind-
ing tool
for newly
sequenced
organisms

[MCSHAN ET AL. 03] com-
pound
lists

rules
(state
transi-
tions)

yes no no rule-based metabolic
pathfinding
tool

[RAHMAN ET AL. 04] com-
pounds

reac-
tions

yes no no chemical
similarity

metabolic
pathfinding
tool

[ARITA 04] [ARITA 03] small
com-
pounds
(meta-
bolites)

atom
map-
pings

yes no yes atom
tracing

small world
property
for E. coli
metabolic
network
rejected

[HOU ET AL. 04] com-
pound
lists

rules yes no no rule-based prediction
of
biodegra-
dation
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1.2 Representation of metabolic data

Authors Nodes Arcs Di-
rected

Bi-
par-
tite

Weigh-
ted

Treatment of
ubiquitous
compounds

Remarks

[CROES ET AL. 05]
[CROES ET AL. 06]

set 1:
com-
pounds,
set 2:
reac-
tions

educt-
reaction
and
reaction-
product
rela-
tion-
ships

yes yes yes exclusion
by weight

metabolic
pathfinding
tool

Table 1.1: The table summarizes some metabolic graph structures used in the literature.

These representations can be divided in different categories with respect to their
treatment of compounds and reactions: The first category includes graphs that
have reactions as nodes linked by arcs that represent compounds shared by re-
actions [FORST & SCHULTEN 01]. The second (and more common) strategy is
to represent compounds as nodes and reactions as arcs [FELL & WAGNER 00],
[GOESMANN ET AL. 02], [RAHMAN ET AL. 04]. A third way is to use bipartite
graphs that represent compounds and reactions as nodes and educt-reaction/reaction-
product relationships as arcs [KÜFFNER ET AL. 00], [VAN HELDEN ET AL. 01],
[SIRAVA ET AL. 02], [CROES ET AL. 05].

It is also interesting to summarize the different strategies, which are used to avoid
ubiquitous compounds. Ubiquitous compounds are small compounds that appear in a
large number of reactions, either as co-factors or side compounds. Despite their high
connectivity, they can generally not be considered as valid intermediates between reac-
tions in a metabolic pathway. Consider for example the two following reactions (KEGG
reaction ids are given in brackets):
Lactose + H2O⇐⇒ alpha-D-Glucose + D-Galactose (R01678) and
L-Tryptophan + H2O⇐⇒ Indole + Pyruvate + NH3 (R00673).
Connected in a metabolic graph these two reactions would allow the following path, if
ubiquitous compounds are not avoided:
alpha-D-Glucose =⇒ R01678 =⇒ H2O =⇒ R00673 =⇒ Indole.
This path gives the impression that alpha-D-glucose can be transformed into Indole
in two steps, using H2O as intermediate. This is however completely irrelevant for a
biochemist. Four strategies have been proposed to tackle the problem of ubiquitous
compounds: The first is to avoid ubiquitous compounds by excluding them from the
graph [FELL & WAGNER 00], [VAN HELDEN ET AL. 01], [SIRAVA ET AL. 02]. This re-
quires a list of ubiquitous compounds to be excluded. Ubiquitous compounds can be
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1 Introduction

excluded based on their connectivity, or based on a combination between connectivity
and biochemical properties [VAN HELDEN ET AL. 00], [VAN HELDEN ET AL. 02]. It is
however difficult to find the correct cut-off that divides ubiquitous from other com-
pounds. Another strategy exploits knowledge of the molecular structure of compounds
(atom tracing [ARITA 04], chemical similarity [RAHMAN ET AL. 04]) to differentiate
between main and side compounds. This strategy restricts the compound set of the
metabolic graph to compounds whose structure is known.
A third strategy relies on rules to avoid short cuts via ubiquitous compounds. Rules
are coded either as predecessor/successor lists for compounds [MCSHAN ET AL. 03] or
as allowed transformations for functional groups of compounds [HOU ET AL. 04]. This
strategy requires an annotation effort to generate those rules.
Recently, a new strategy has been introduced by Didier Croes ([CROES ET AL. 05]
and [CROES ET AL. 06]) that uses weighted metabolic graphs to avoid ubiquitous com-
pounds. This strategy is presented in more detail in section 1.5.

1.3 Properties of metabolic graphs

The representation of metabolic data as graphs allows the application of graph analy-
sis tools and concepts on them. These concepts include mathematical definitions for
measurements such as the network diameter and the distribution of connectivity. Prop-
erties of metabolic graphs that have been stated based on these measurements will be
described in more detail below.

Power law of connectivity
[JEONG ET AL. 00]
Jeong et al. investigated the topological properties of metabolic networks from 43 dif-
ferent organisms. They showed that the distribution of connectivity follows a power-law
with negative exponent. This means that there are many nodes with low connectivity
and some nodes, also termed hubs, which have a high connectivity.

Small world and scale-freeness
[JEONG ET AL. 00]
The small-world property is measured with the network diameter, which is defined as
the length of the shortest path between any two nodes, averaged over all nodes of the
network. Jeong and co-workers found that the network diameter for metabolic networks
from 43 different organisms is around 3. This means that in average 3 steps are suffi-
cient to go from any node to any other node in the network. The authors state that the
small network diameter is a consequence of the highly connected hub nodes. Because
the network diameter is the same for metabolic networks of different size, Jeong and
co-workers regard metabolic networks as scale-free with respect to their small-world
property.
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1.3 Properties of metabolic graphs

Modularity

[RAVASZ ET AL. 02]
This property is measured by the clustering coefficient, which is defined for a given node
as the number of direct links between its neighbors divided by the number of possible
links between the neighbors. The clustering coefficient of the graph is the averaged
clustering coefficient of all its nodes. The topological overlap, defined by Ravasz and
co-workers as the number of nodes to which two selected nodes are both linked, is
another measurement of modularity. Ravasz et al. applied these two measurements to a
number of metabolic networks from different organisms and concluded that metabolic
networks are modular.

Hierarchical architecture

[RAVASZ ET AL. 02]
Ravasz and co-workers state that having both, modularity and scale-free organization
of metabolic networks, poses a problem, because scale-freeness strongly restricts mod-
ularity. To solve this conflict, Ravasz and co-workers propose that metabolic networks
have a hierarchic topology. To show that this is indeed the case, they measured the
distribution of the clustering coefficient over the connectivity k for 43 organisms.
For all organisms, this distribution approximates k−1, which equals the distribution
of artificial hierarchical networks. From these results, they conclude that metabolic
networks are hierarchically organized. This hierarchy is achieved by modules (highly
inter-connected regions), which are connected by hubs.

It is important to note that these properties do not describe metabolism itself, but the
metabolic graphs that represent metabolism. Thus, they depend on the graph type that
has been chosen to measure those properties. For example, the small-world property is
highly dependent on the treatment of ubiquitous compounds. Ubiquitous compounds
are the hubs of metabolic graphs. If they are avoided to obtain pathways between
nodes of metabolic graphs that are closer to biochemical pathways, the small-world
property vanishes. This is why two authors [ARITA 04], [CROES ET AL. 06], recently
contradicted the small-world property. After treatment of ubiquitous compounds, they
obtained network diameters of 8 steps ([ARITA 04], graph with reversible arcs) and
around 7 steps ([CROES ET AL. 06], weighted KEGG graph). When Arita included
ubiquitous compounds in his metabolic graph by ignoring the structural information
of compounds, he measured a network diameter similar to the 3.2 steps observed by
Jeong and co-workers, whereas Croes obtained a diameter of around 2 steps for his raw
graph.
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1 Introduction

1.4 Related tools

There are two categories of tools available that perform tasks related to the task of the
PathwayBuilder. It is therefore of interest to point out what they can do and how they
differ from the PathwayBuilder.

1.4.1 Tools mapping microarray data on pathway maps

The first category includes tools that have been developed for the interpretation of mi-
croarray data with respect to metabolic pathways. A selection of them is listed in Table
1.2.

Tool Web-
tool

Stand
alone

Micro-
array
data

Pathway
data

Display Remarks

GenMAPP
(Gene Map
Annotator
and Pathway
Profiler)
[DAHLQUIST ET AL. 02]

no yes raw for-
mat

MAPPs
(down-
loadable
or user-
defined
path-
ways)

coloring of
reactions
according
to expression
values

only available
for Windows

PathwayAssist
[NIKITIN ET AL. 03]

no yes various
formats

KEGG
or user-
defined
path-
ways

coloring of
reactions
according
to expression
values

commercial
software

MAPMAN
[THIMM ET AL. 04]

no yes raw for-
mat

maps
(down-
loadable
or user-
defined)

color-
coded gene
expression
values
for each
condition

specialized on
plant meta-
bolism

Omics Viewer
[PALEY & KARP 06]

yes yes raw for-
mat

BioCyc highlights
areas on
organism-
specific
overview
diagram

animated
visualization
possible

Table 1.2: Selection of tools, which map microarray data on metabolic pathways.
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1.4 Related tools

These tools share some common features. Usually, reaction nodes in the pathways
are colored according to the expression value of the gene that codes for the enzyme,
which carries out the given reaction. Many of them accept user-defined pathway data
in addition to an inbuilt set of pathways [DAHLQUIST ET AL. 02], [NIKITIN ET AL. 03],
[THIMM ET AL. 04]. All of them map gene expression data on pre-defined metabolic
pathways (maps). Thus, they do not allow inference of metabolic pathways, which
means that they are restricted to annotated pathways. If a group of co-expressed genes
is associated to reactions located on different maps, these tools display at best separate
maps but not a pathway that would connect these reactions. Here lies the improvement
of the PathwayBuilder in comparison to these tools.

1.4.2 Tools for path�nding in metabolic graphs

Tools in the second category infer pathways from metabolic graphs given a start and an
end node. An incomplete list gives an overview on them.

Tool Web-
tool

Stand
alone

Data Algo-
rithm

K shor-
test path

Search Validation

BioMiner
[SIRAVA ET AL. 02]

no no KEGG depth
first
search
with
con-
straints

yes 2-end 2 pathways

PathMiner
[MCSHAN ET AL. 03]

yes no KEGG transition-
space is
searched
by opti-
mizing
a score
function

no 2-end 4 pathways
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Tool Web-
tool

Stand
alone

Data Algo-
rithm

K shor-
test path

Search Validation

Metabolic
Map Viewer
[ARITA 03]

yes no KEGG,
BREN-
DA,
EN-
ZYME

Eppstein yes 2-end coverage of
reference
metabolism
(E. coli) and
validity of
paths
checked
(paths are
regarded as
valid if at
least one
carbon atom
is trans-
ferred)

Pathway
Hunter Tool
[RAHMAN ET AL. 04]

yes no KEGG,
BREN-
DA,
PRO-
SITE

breadth
first
search
with
con-
straints
(chem-
ical
similar-
ity)

yes 1-end
and
2-end

2 pathways

Metabolic
Pathfind-
ing Tool
[CROES ET AL. 05]
[CROES ET AL. 06]

yes no KEGG,
EcoCyc

back-
tracking
with
con-
straints

yes 2-end on pathways
stored in
aMAZE (56)
and Eco-
Cyc (92)

Table 1.3: Selection of metabolic pathfinding tools.

Most tools listed in Table 1.3 are based on a k shortest path algorithm (Eppstein, back-
tracking) to rank a set of shortest paths between two seed nodes. They are all restricted
to two seed nodes (2-end search) in contrast to the PathwayBuilder, which should accept
any number of seed nodes. A major drawback of those tools is their lack of validation
with respect to the inferred pathways, with the exception of the Metabolic Pathfinding
Tool [CROES ET AL. 05]. Details on this tool will be given in the next section.
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1.5 Previous projects

1.5 Previous projects

The current work depends on two other projects that have been carried out at the
SCMBB.

1.5.1 aMAZE project

The aim of the aMAZE project was to integrate biological data from differ-
ent sources in a generalized data model (introduced by [VAN HELDEN ET AL. 00],
developed by [LEMER ET AL. 04a]) that allows complex queries. Those queries
can be written in a newly developed query language called IQL (Igloo
Query Language), which allows direct retrieval of graphs from the stored data
[LEMER ET AL. 04b]. The aMAZE database, developed as part of the aMAZE project
(http://www.scmbb.ulb.ac.be/amaze/), contained data imported from KEGG and in addi-
tion a number of metabolic pathways that were annotated based on the biological know-
ledge from human experts. The current work relies on the aMAZE project and related
projects (transMAZE/bioMAZE) in several aspects: First, the metabolic graph was col-
lected from the aMAZE database with the help of IQL. Second, the PathwayBuilder uses
data structures developed by the Northbears team (http://www.northbears.org/) as part
of the transMAZE/bioMAZE projects, which ease visualization and storage of graphs.
Third, some of the annotated pathways stored in the aMAZE database have been used
as references for the study cases. Details will be given in the following chapters.

1.5.2 Metabolic Path�nding Tool

This work is based on previous work done by Didier Croes and Fabian Couche. Fabian
Couche developed a variant of the backtracking algorithm that takes into account con-
straints like the path length and the maximal weight (more details in the material and
methods chapter). Didier Croes’ major contribution to metabolic pathway inference is
the use of weighted graphs for the exclusion of ubiquitous compounds. For each of the
data sets of metabolic reactions in KEGG and EcoCyc (the PGDB in BioCyc dedicated
to E. coli), he constructed three different directed, bipartite graphs and compared the
performance of the backtracking algorithm on those six graphs. The three graph types
differed in their treatment of ubiquitous compounds. In the first graph (termed raw
graph), ubiquitous compounds were not treated at all. In the second graph, called filtered
graph, 36 ubiquitous compounds were excluded. In the third graph (called weighted
graph), a weight was assigned to compound nodes that corresponds to their connectivity.
The average positive predictive value and the average sensitivity of metabolic pathfind-
ing were derived comparing inferred pathways with annotated pathways in aMAZE (56
pathways) and EcoCyc (92 pathways). The weighted graph had the highest average
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positive predictive value and sensitivity, both for its construction from the KEGG LI-
GAND database (validation with pathways in aMAZE) and from the EcoCyc database
(validation with pathways in EcoCyc).
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2.1 Material

2.1.1 Metabolic database

The metabolic database of choice is the aMAZE database [LEMER ET AL. 04a], because
of its advanced query language that allows the construction of bipartite, directed graphs
directly from the whole set of reactions and compounds stored in aMAZE. The aMAZE
database contains KEGG data imported in December 2004. In the near future, more
recent updates will be used.

2.1.2 Language of implementation

Java (version 1.5) has been chosen as language for the implementation of the Pathway-
Builder for several reasons:

Java is object oriented, which supports modular programming. To split a program in
modules is of advantage if parts of the program should be altered or re-used. Java is
portable, available for free and Java objects can be exchanged between multiple plat-
forms.

More important, Java is the language of choice of the aMAZE and parts of the Trans-
MAZE/BioMAZE projects, which includes data structures (especially the Graph, Data
and GraphDataLinker structures) and libraries that are important for the current work.
Using Java makes them directly accessible.

In addition, the backtracking algorithm developed by Fabian Couche, which forms the
core of both the PathwayBuilder and the Metabolic Pathfinding Tool by Didier Croes,
has been written in Java.

Thus, using Java eases the integration of previous work into the current project and
code, which has already been developed and tested, does not need to be rewritten.

2.1.3 Integrated Development Environment

Eclipse (http://www.eclipse.org/) is an open source development platform that offers
excellent support for Java. Among other services it provides content/code assist (auto-
completion of variable names or common program structures like try/catch), quick fix
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(suggestions to correct errors), support for JUnit (for code testing), Ant (a make tool for
Java) and refactoring (modification of code without changing the external behavior, for
example change of a variable name). These features speed up development and make
Eclipse the tool of choice for implementation in Java.

2.1.4 Graph visualization software

Cytoscape [SHANNON ET AL. 03], an open source graph visualization tool, is special-
ized in the visualization of biological networks. Its main advantage is its ability to link
nodes and arcs with a number of attributes that are displayed separately in an attribute
browser. It includes an implementation of several general graph layout algorithms,
which allow to display graphs in a user-interpretable way. Cytoscape has been inte-
grated into the aMAZE project by the North bridge, a plugin for Cytoscape that allows
to send graphs coded in the GraphDataLinker structure to Cytoscape from a running
program or to load graphs stored in GDL files into Cytoscape.

2.2 Methods

2.2.1 Linkage of genes to reactions

Given a group of co-expressed genes, the enzyme-coding genes need to be identified.
If the function of the genes is known, any genome or pathway/genome database can be
used to identify enzymes among the genes.
The more complicated step is then to link the enzyme to the reaction(s) it is catalyzing.
One way to achieve this is to use the enzyme’s EC number. The problem of linking
enzymes to reactions via EC numbers is that one reaction can belong to more than one
EC number and one EC number can be associated to more than one reaction. The
latter is due to the fact that an EC number reflects a reaction mechanism rather than a
concrete reaction. The same mechanism can take place with different co-factors or with
different educts having the same functional group. For example the EC number 2.7.4.6
(ATP + nucleoside diphosphate ⇐⇒ ADP + nucleoside triphosphate) is associated to
12 reactions, where the role of the nucleoside diphosphate is carried out by UDP, GDP,
CDP and other nucleoside diphosphates.

A better way is the usage of annotated pathways where enzymes are linked directly
to their reactions. For example in the aMAZE database, pathways have been annotated
for three organisms (E. coli, yeast and human) that provide such a linkage, but they
cover only a small part of known reactions and compounds for any of these organisms.
Other annotation efforts attempt to reconstruct the whole metabolic network of an or-
ganism. For S. cerevisiae, Förster et al.[FÖRSTER ET AL. 03] provide a data set that
links enzymes directly to reactions. It is based on information from genome annotation,

24



2.2 Methods

pathway databases, biochemistry textbooks and recent publications. Unfortunately, the
reactions are not cross-linked to KEGG reactions and therefore it is difficult to benefit
from these annotations in the current work. However, this dataset might be useful for
yeast-specific pathway-inference in the future.

Due to the lack of annotation, an enzyme-coding gene will be linked to its reaction(s)
via its EC number(s). EC numbers reflect catalytic sites of enzymes. Hence, enzymes
with more than one catalytic site are annotated with more than one EC number, each of
which can be associated to more than one reaction.

There is support for the assumption that different catalytic activities of the same
enzyme are usually involved in the same metabolic pathway (fusion enzymes,
[CROES 05], chapter VI.2.2). Therefore, it is reasonable to take EC numbers as in-
put for pathway inference. This requires a grouping of reactions that will be discussed
in section 2.2.6.

2.2.2 Representation of metabolic data

As the work of Didier Croes demonstrates, the choice of a directed, bipartite and
weighted graph for the representation of metabolic data allows successful metabolic
pathfinding. None of the other graph structures described in the literature has been val-
idated in a similar exhaustive manner with respect to metabolic pathfinding. Thus, the
graph structure of Didier Croes was adopted for the current work. Below, a motivation
for the choice of this particular graph structure is given. A more detailed description
can be found in the thesis of Didier Croes [CROES 05].

Directed graph

In the context of pathway inference, a metabolic graph should be directed. Otherwise,
a path going from educt to educt (or from product to product) of the same reaction is
possible, which will lead in most cases to biochemical invalid paths. For example the
reaction:
Cystathionine + Succinate⇐⇒ O-Succinyl-L-homoserine + L-Cysteine (R02508)
has two educts. An undirected graph would allow the following path:
Cystathionine⇐⇒ R02508⇐⇒ Succinate
This path suggests that Succinate is synthesiszed from Cystathionine in one step, which
is unlikely.

Bipartite graph

In a bipartite graph, compounds and reactions are represented as two separated node
sets. In graphs with only one node set, either the compounds or the reactions need to
be represented by the arcs. In case arcs are standing for reactions, each reaction occurs
several times (as often as there are educts for the given reaction). The same holds if arcs
stand for compounds: each compound occurs as often as there are reactions of which
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this compound is an educt. In metabolic graphs with only one node set it is therefore
possible to cross either the same reaction or the same compound more than once. This
complicates pathfinding unnecessarily.

Weighted graph

As has been shown in the introduction, different strategies have been applied to avoid
ubiquitous compounds. In contrast to strategies based on chemical structure or rules, the
use of weights does not require any additional information about the compounds and
leads nevertheless to predictions of high accuracy. The connectivity has been chosen
as weight for compound nodes by Didier Croes, because it is the only characteristic
that differentiates ubiquitous from other compounds. Consequently, the k shortest path
algorithm developed by Fabian Couche returns paths that are not shortest with respect
to their length but with respect to their weight. Thus, the more connected a compound
is (the more it behaves as an ubiquitous compound), the less likely it is to appear in a
solution.

Reversibility of reactions

There are two strategies of dealing with directions of reactions: Either the direction can
be represented as annotated in the metabolic database or for each reaction both direc-
tions can be included in the metabolic graph. The direction of a reaction depends on its
free energy ∆G. ∆G in turn depends on the standard free energy ∆G0 as well as on educt
and product concentrations and the temperature (∆G = ∆G0 +RT ln [productC]∗[productD]

[eductA]∗[eductB] ).
In principle, even a reaction with positive ∆G0 is reversible if the term containing the
ratio of product and educt concentrations is negative enough to outweigh ∆G0. Only
in a few cases ∆G0, the educt and product concentrations and therefore the direction of
reactions are known. Thus, the second strategy has been adopted for the collection of
the metabolic graph. Reactions are represented as shown in Figure 2.1.

As can be seen in Figure 2.1, the graph is symmetric: The path A =⇒ R> =⇒ C has
the same weight as the path C =⇒ R< =⇒ A. The exploitation of this symmetry saves
computation time.

As pointed out in Didier Croes’ thesis [CROES 05] and in [VAN HELDEN ET AL. 02],
the two directions of one reaction should be mutually exclusive (the choice of one of
the two directions excludes the other from any solution). Otherwise, the same reaction
could be passed twice. For example, the reaction:
Prephenate⇐⇒ Phenylpyruvate + H2O + CO2 (R01373)
can be considered. If its two directions are not treated as mutually exclusive, a path
traversing the following nodes is possible:
Phenylpyruvate =⇒ R01373 reverse =⇒ Prephenate =⇒ R01373 direct =⇒ H2O
Phenylpyruvate cannot be converted into H2O in two reaction steps, therefore this solu-
tion is biochemical invalid.

A third strategy would be to use direction annotations as far as available and to rep-
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A

B

C

D

R >

R <

Figure 2.1: This Figure shows how direct and reverse reactions are represented in the metabolic
graph.
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resent reactions with unknown direction as described above. This strategy increases
computation time because the symmetry of the metabolic graph will be destroyed. To
answer the question whether the integration of more information outweighs the loss of
computation time will be a task for the future.

2.2.3 Collection of the metabolic graph

The directed, bipartite and weighted metabolic graph containing direct and reverse
reactions was collected from the aMAZE database using the Igloo Query Language
(IQL). The metabolic graph consists of all compounds and reactions stored in aMAZE.
To demonstrate the power of IQL, the query that was used to generate the metabolic
graph used throughout this work is given below:

GET Reaction
HAVING Label ∼ ‘%‘
OR REV ERSE_REACT ION.Label ∼ ‘%‘
FILL ECNumber,Re f erencedOb ject.PublicId,
< Educt.Compound,
> Product.Compound
INTO : aMAZE_metabolicGraph

2.2.4 K shortest path algorithm

The PathwayBuilder relies on the repetitive usage of a k shortest path algorithm. The k
shortest path algorithm chosen is the constrained version of backtracking implemented
by Fabian Couche.

Because the metabolic graph is large (22455 nodes) and backtracking is exponential,
constraints are needed to reduce the size of the traversed graph.
In the implementation of Fabian Couche, the following constraints have to be satisfied
by a valid solution path: The length of the path should not be larger than a maximum
path length and not be smaller than a minimum path length. The weight of the path
should not exceed a given maximum. The number of returned paths should be restricted
by a given rank. In addition, a timeout constraint exists that interrupts the search after
a given time to avoid too long running times in case there is no path between two seed
nodes.

Given these constraints, the algorithm proceeds as follows ( [COUCHE 02]):

• First, it tests whether the current node equals the end node. If this is the case, the
path that has been followed from the start node to the current node is stored in a
list of ranked paths.
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• If the number of paths in the path list exceeds the number of ranks, the last (worst)
path is removed from the list and the weight of the worst among the remaining
paths is the new maximal weight.

• If the current node is not the end node, the algorithm tests whether the length
of the path is below the maximal length. If this is the case, it tests for all non-
marked neighbors of the current node, whether or not including this neighbor in
the current path would increase its weight above the maximal weight.

• If not, the neighbor is marked as visited and added to the current path. The back-
tracking algorithm is then called on the neighbor as the new current node.

In contrast to pure backtracking, the constrained version has reasonable running
times (in the order of minutes or limited by the time constraint).

2.2.5 Metabolic pathway inference algorithm

The task of the pathway inference algorithm is to connect a set of seed nodes in a
metabolic graph. The solution is a subgraph of the metabolic graph that represents a
metabolic pathway. This pathway could be branched or even contain cycles.

The pathway inference algorithm has to satisfy several requirements:

1. Firstly, it should accept multiple seed nodes. This contrasts with path finding,
which is based on a pair of seed nodes (source and target).

2. It should be able to deal with an arbitrary order of seed nodes because a priori it is
not known which seed nodes are the terminal nodes of the solution pathway and
which are intermediate nodes.

3. It should be able to deal with orphan seed nodes. Orphan seed nodes are seed
nodes that cannot be connected to any other seed node under the given constraints.

4. It should output a list of graphs, just as the k shortest path algorithm outputs a list
of paths. Thus, alternative solutions can be explored.

These specific requirements make it hard to use a ready-made algorithm. How-
ever, Dooms and co-workers developed a promising approach to solve the problem
of connecting multiple seeds in metabolic graphs [DOOMS ET AL. 05]. CP(Graph),
a constraint programming domain, allows formulating this problem in terms of con-
straints that are evaluated by dedicated propagators. Unfortunately, the current version
of CP(Graph) is restricted to graphs with less than 500 nodes.

Van Helden and al. [VAN HELDEN ET AL. 01] [VAN HELDEN ET AL. 02] developed
an algorithm that is able to connect a set of seed nodes in unweighted graphs. They
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applied this algorithm to a group of co-expressed genes from a gene expression data
set in yeast [SPELLMAN ET AL. 98] and obtained a pathway that combined two known
pathways, namely the sulfur assimilation and methionine biosynthesis pathways. Their
algorithm was adapted to weighted graphs in the current work. Its principle is based
on the idea by van Helden and colleagues, but details in the implementation might differ.

To explain the principle of the algorithm, the concept of a distance measure in graphs
needs to be introduced. A distance measure is a nonnegative function that has three
properties [CHARTRAND & LESNIAK 96]:

1. It is symmetric: d(A,B) = d(B,A).

2. The distance between two objects A and B is zero iff A equals B.

3. The triangle inequality is valid: d(A,C)≤ d(A,B)+d(B,C).

If a distance measure has been defined, a distance matrix consisting of the distances
between all possible object pairs can be calculated. In the case of two seed nodes, the
weight of the shortest path(s) connecting them has been chosen as distance measure.

The first step is to fill the entries in the distance and path matrices with the help of
the k shortest path algorithm. Each entry of the distance matrix contains the weight of
the shortest path(s) between two seed nodes. The path matrix stores all paths obtained
for a given seed node pair under the given constraints.
This is the most time-consuming step, because for a metabolic graph with direct and
reverse reactions, the k shortest path algorithm needs to be called 1

2N(N − 1) times,
where N is the number of seed nodes. This corresponds to one half of the matrix to be
filled without diagonal. If the metabolic graph would contain only direct reactions or
direct and reverse directions for only some reactions, even more entries of the matrix,
namely N(N − 1) entries, would have to be calculated. This is the reason for the
statement above that a metabolic graph containing direct and reverse directions for each
reaction saves computation time.

In the next step, for each seed node its closest partner among all the seed nodes is
identified. This information is contained in the distance matrix. From the path matrix,
all paths between the seed node and its closest partner are collected. Paths that are
redundant (which connect seed nodes already connected to other seed nodes by shorter
paths) are removed.

The collected paths are assembled in the guide graph. Thus, the guide graph consists
of all paths that connect a seed node to the closest among all other seed nodes. The
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guide graph can be filtered according to different criteria as the rank, the weight or the
path length. The filtered guide graph is called result graph and represents the inferred
pathway.

In addition to the retrieval of guide and result graph, a single linkage clustering is
performed on the distance matrix. Single linkage [SIBSON 73] is a bottom-up clustering
technique that starts with clusters consisting of single objects (the leafs) and joins
them until all objects to be clustered are contained in one single cluster (the root). The
resulting tree is also called a dendrogram. The dendrogram shows, which seed node (or
seed node group) is closest to which other seed node or seed node group.

In the following it is discussed whether this strategy can satisfy the requirements
outlined above:

1. Multiple seeds
The distance and path matrices can be calculated for N seed nodes, where N can
be larger than two.

2. Order of seed nodes
Another order of the seed nodes only changes the order of rows and columns in
the distance matrix. The collection of node pairs with smallest distance from the
distance matrix is independent from the order of its rows and columns.

3. Treatment of orphan nodes
If a distance between two seed nodes cannot be obtained (timeout of the k shortest
path algorithm), their distance is regarded as being infinite. A seed node with
infinite distances to all other seed nodes is an orphan node.

4. Ranked list of subgraphs
The filtering of the guide graph allows obtaining a list, which contains the result
graph of first rank, of second rank and so on.

The different steps of the algorithm are summarized in Figure 2.2.

2.2.6 Parameters of metabolic pathway inference

In addition to the parameters needed by the backtracking algorithm (rank, maximal
weight, minimal and maximal length, time out) the following parameters are important:

• Rank
It can happen that two seed nodes are connected by more than one path with
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Figure 2.2: The PathwayBuilder proceeds by first filling a distance and a path matrix for the
given seed nodes. All paths that belong to the seed node pairs with shortest distance are unified
to the guide graph. Paths of first rank form the result graph. In this example, one path of weight
10 was found between seeds A and B and two paths of weight 15 and 30 between seeds A and
C. The distance of A and C is 15, because the distance between a seed node pair is defined as the
weight of the shortest path connecting it. The shortest path between C and B with a weight of
40 is redundant, because B and C are already connected to other seeds (in this case A) by paths
with weights below 40.
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the same weight. These paths are equally valid solutions all of which should
consequently be considered. This idea is expressed by the rank parameter: paths
with the same weight have equal ranks. An example is given in the table below:

order (k) of paths 1 2 3 4
weight of paths 100 100 112 114
rank of paths 1 1 3 4

By default, the result graph is assembled from the guide graph by obtaining all
paths of first rank. Note that paths could be ranked according to another parame-
ter, for example their lengths. By default, the rank refers to the path weight.

• Distance measure The default distance measure between two seeds is the weight
of the shortest path(s) connecting them. Alternative distance measures could be
defined as for example the length of the path or a mixture of length and weight.

• Node weights By default, weights are given as described by Didier Croes,
namely:

– All the reaction nodes have a weight of 1.

– The weight of a compound node corresponds to its degree.

The weights could be modified, for example instead of the connectivity only the
number of incoming or outgoing arcs could be taken as weight for compound
nodes.

• Path length The path length can be defined in different ways. Usually, the length
of a path is defined as the number of its nodes (including start and end node). An
alternative definition of path length could take into account the number of arcs or
the number of metabolic steps (reaction -> compound -> reaction or compound
-> reaction -> compound).

2.2.7 Grouped seed nodes

As has been mentioned above, the PathwayBuilder needs to deal with grouped seed
nodes. The following groups can occur in metabolic pathway inference:

1. Reaction groups Each reaction is a group consisting of its direct and reverse
direction.

2. EC number groups In the context of pathway inference, an EC number is a group
of reactions. Thus, an EC number group is a group of groups, because it consists
of one or more reactions and each reaction is a group consisting of two directions.
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3. Enzyme groups Enzymes can have multiple catalytic sites, in which case they
are associated to more than one EC number. Consequently, an enzyme group
contains all EC numbers associated to it. Enzyme groups can be separated into
EC number groups, because multiple catalytic sites of one enzyme are likely to
play a role in the same pathway. Thus, this group is not of concern for metabolic
pathway inference from a set of co-expressed genes.

Figure 2.3 shows how grouped seed nodes are treated.
In case of single seed nodes the distance corresponds to the weight of the shortest

path(s) between them. If the distance between groups of seed nodes should be
calculated, a definition for the distance between seed node groups is needed.

In case of two reaction groups, the definition is straightforward: The shortest distance
between two reaction groups corresponds to all shortest paths of same rank that connect
a member of reaction group A with a member of reaction group B. For EC number
groups, the shortest distance between two groups can be defined as all shortest paths
of same rank that connect any reaction direction within EC group A to any reaction
direction within EC group B.

2.2.8 Architecture of the PathwayBuilder

The PathwayBuilder consists of several components, which handle different tasks.
Some components that were already available could be integrated thanks to the aMAZE
team. This concerns the visualization as well as the metabolic graph collection and
the k shortest path algorithm. In addition, the PathwayBuilder makes use of a graph
structure developed by the aMAZE team and termed GraphDataLinker (GDL). It has
several advantages over other graph structures: Thanks to the North bridge plugin GDL
files can be loaded into Cytoscape or send to Cytoscape from a running program. This
allows to automatically display the resulting graphs with various layout algorithms, and
to explore it at different levels of resolution. The GDL stores attributes of nodes and
arcs separately from the graph to speed up graph algorithms. These attributes can be
added at need to the solution graph. The GDL can be saved as GDL file in XML format,
which eases exchange and storage of graphs.

The architecture of the PathwayBuilder is summarized in Figure 2.4.

2.2.9 Comparison of annotated to inferred metabolic

pathways

There are three ways to compare an inferred pathway to an annotated one.

1. The first way is to use a graph comparison algorithm that assigns a score depend-
ing on the degree of matching between the two graphs.
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EC number group EC4
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Figure 2.3: This Figure shows how a pathway is inferred from EC number groups. Three genes
are given (A, B and C), which are linked to four EC number groups EC1, EC2, EC3 and EC4,
which in their turn are associated to five reaction groups (R1 to R5). The PathwayBuilder finds
shortest paths between reaction groups 1 and 2 and reaction groups 2 and 3, thereby linking EC
number groups EC1, EC2 and EC3. Reaction group 5 cannot be linked to any other reaction
group and is therefore an orphan. Below, the inferred pathway linking three of the four EC
number groups is displayed. It is of note that EC number group EC3 contributes only one of its
reactions to the inferred pathway.
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Figure 2.4: Architecture of the PathwayBuilder.

2. The second way is to linearize the annotated and inferred pathways and then to
apply alignment algorithms on them. Both ways are beyond the scope of this final
work, but might be explored in future.

3. The third and simplest way is to operate on the node sets of the annotated and the
inferred pathway. This strategy does not take into account the order of nodes, but
returns the number of true and false positives and false negatives. It has been used
by Didier Croes to calculate the accuracy of his metabolic pathfinding tool. The
size of the intersection of both sets gives the number of true positives (TP). The
number of inferred nodes not present in the annotated pathway corresponds to the
number of false positives (FP), and the number of annotated nodes not present in
the inferred pathway to the number of false negatives (FN).

To evaluate a prediction tool, its sensitivity and specificity with respect to a reference
data set needs to be calculated. The sensitivity indicates how likely the tool is to miss
true positives. With increasing sensitivity, predictions will contain less false negatives.
The specificity expresses how likely the tool is to accept false positives. The lower the
specificity, the less likely the tool is to reject a false positive. An optimal tool should
have specificity and sensitivity of 1.
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Sensitivity
The sensitivity Sn is the ratio of true positives versus true positives and false negatives:
Sn = T P/(T P+FN)

Speci�city
The specificity Sp is defined as the number of true negatives (TN) divided by the num-
ber of true negatives and false positives:
Sp = T N/(T N +FP)
In case of pathway inference, the number of true negatives corresponds to the number
of all compounds and reactions (minus the compounds and reactions contained in the
annotated and inferred pathway). Consequently, the ratio would always be close to 1,
because the number of false positives is small in comparison to the number of true nega-
tives. This is the reason why the specificity has been replaced by another measurement,
namely the positive predictive value.

Positive predictive value
The positive predictive value PPV is defined as the number of true positives divided by
the sum of true and false positives:
PPV = T P/(T P+FP)
Thus, it gives the ratio of true positives versus all positives.

Accuracy
Given specificity and positive predictive value, the accuracy Acc of the pathway infer-
ence can be calculated, which is defined as the mean of sensitivity and positive predic-
tive value:
Acc = (Sn+PPV )/2
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In its current state, the PathwayBuilder accepts as input compounds, reactions and
groups of reactions (EC numbers). Neither the linkage of genes to EC numbers nor
the association of EC numbers to reactions is implemented in the moment, thus both
steps need to be done independently with the help of pathway/genome databases. Given
the input, the PathwayBuilder returns the inferred pathway in form of the result graph.

3.1 Properties of the metabolic graph

The metabolic graph on which the pathway inference is performed consists of 22455
nodes (11684 reaction and 10771 compound nodes) and 46430 arcs. It is of note that
the number of reaction nodes and arcs has been doubled by the inclusion of direct and
reverse reactions. Without the reverse reactions, the graph would include only 5842
reaction nodes and 23215 arcs.

A digraph D is strong (or strongly connected) if for every pair u, v of vertices, D
contains both a u− v path and a v−u path. (cited from [CHARTRAND & LESNIAK 96])
The metabolic graph consists of 6534 strongly connected components (identified with
the "Analyze Graph" function of the yED graph editor
http://www.yworks.com/en/products_yed_about.htm). Thus, computation time can be
decreased if at least components consisting of single compound or reaction nodes could
be removed (which is planned as one of the future improvements).

The 10 compounds with highest connectivity in the given metabolic graph are listed
below:

H2O 3894
O2 1346
H+ 1202
NAD+ 1190
NADH 1154
ATP 888
Orthophosphate 736
CO2 716
ADP 652
CoA 624
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3 Results

This list differs from other lists of top 10 hubs as given in [ARITA 04]. The list
depends on the data from which the metabolic graph was constructed. A difference to
previous lists might therefore be due to the different data sets used or to the different
ways the graphs were constructed.
It is of note that there is a large distance between the most highly connected compound
(H2O) and the second most highly connected compound (O2).

3.2 Study Cases

3.2.1 Pathway inference parameters

All the analyses were performed with the same parameters given below:

Maximal weight 1000
Maximal length 20
Minimal length 1
Number of ranks 5
Time-out 5 minutes

The maximal weight excludes a number of compounds (H2O, O2, H+, NAD+ and
NADH) from any possible solution path. Hence, metabolic pathways in which those
compounds constitute necessary steps cannot be inferred. The limit of 1000 was chosen
to speed up computation and will be increased after planned improvements have been
implemented.

For each input EC number, all reactions listed in KEGG have been taken into account.
The result graph was retrieved from the guide graph by keeping all paths of first rank.

3.2.2 Methionine Biosynthesis in E.coli

This study case has been chosen to demonstrate the functionality of the PathwayBuilder.
The methionine biosynthesis pathway linearized by Didier Croes has been selected as
reference pathway (Figure 3.1), because Didier Croes showed in his supplementary
material (http://www.scmbb.ulb.ac.be/Users/didier/pathfinding) that pathway inference
given two seeds did not recover the complete pathway. Since two seed reactions are not
sufficient to infer the complete pathway, three seed reactions (the start reaction R00480,
the end reaction R00946 and an intermediate reaction, R01777) have been given as input
to the pathway inference.

In Figure 3.2, the dendrogram of the pathway inference is given. It can be seen
that the intermediate reaction R01777 has a shorter distance to the end reaction of the
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3.2 Study Cases

Figure 3.1: The annotated methionine synthesis pathway as given in the supplementary material
of Didier Croes is shown.
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0.0

3.0

105.0

102.0 102.0

R01777 R00480R00946

Figure 3.2: This figure shows the dendrogram of the methionine biosynthesis pathway infer-
ence. The edges of the tree representing the dendrogram are labeled with the distances at which
two clusters are merged into one.
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[R01773]

[R03260]

[R00480]

[R02291]

[R00946]

4-Phospho-L-aspartate

O-Succinyl-L-homoserine

[R01290]

O-Acetyl-L-homoserine

[R01285]

[R01288]

L-Homocysteine

[R03260]

Cystathionine

[R03217]

[R02508]

[R01289][R01286]

[R01775]

[R01776]

L-Homoserine

[R01777]

L-Cystathionine

[R03217]

[R01287]

L-Aspartate 4-semialdehyde

Figure 3.3: This figure shows the guide graph of the methionine biosynthesis pathway inference.
Seed nodes have a blue, all other nodes a black border. Compounds are colored in blue and
labeled with their name, reactions are filled with green color and labeled with their KEGG
reaction id.
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L-Homoserine

4-Phospho-L-aspartate

[R01777]

O-Succinyl-L-homoserine

[R00480]

[R01773]

[R02291]

Cystathionine

[R02508]

[R01775]

L-Homocysteine

[R00946]

[R01289]

L-Aspartate 4-semialdehyde

Figure 3.4: This figure shows the result graph of the methionine biosynthesis pathway inference.
Seed nodes have a blue, all other nodes a black border. Compounds are colored in blue and
labeled with their name, reactions are filled with green color and labeled with their KEGG
reaction id.
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annotated pathway than to the start reaction.
Figure 3.3 shows the guide graph of the pathway inference. In the guide graph,

some alternative pathways can be seen that generate L-Homocysteine from 4-Phospho-
L-aspartate via O-Acetyl-L-homoserine and L-Cystathionine.

The result graph is shown in Figure 3.4. Note that its direction differs from the anno-
tated pathway. Since for each reaction its direct and reverse direction were included in
the metabolic graph, the PathwayBuilder cannot differentiate between both directions
and will return any of them arbitrarily.

A comparison of annotated and inferred pathway is given in Table 3.1. The inferred
pathway goes from L-Aspartate 4-semialdehyde to L-Homoserine via two reactions
(R01773 and R01775). Both reactions differ only by their co-factors (R01773 uses
NAD+ and R01775 NADP). Nevertheless, R01773 was counted as false positive, since
it does not appear in the annotated pathway.

inferred
pathway

annotated
pathway

R00480 R00480
C03082 C03082
R02291 R02291
C00441 C00441
R01775 R01775
R01773
C00263 C00263
R01777 R01777
C01118 C01118
R02508 R02508
C00542 C00542
R01289 R01285
C00155 C00155
R00946 R00946

Table 3.1: This table compares the inferred methionine biosynthesis pathway given three seed
nodes to the annotated pathway. False positives are colored in red, true positives in green, false
negatives in orange and seed nodes in blue.

When using two seeds, the inferred pathway of first rank given by Didier Croes
skips Cystathionine (C00542) and the reaction that converts O-succinyl-l-homoserine
(C01118) in Cystathionine (R02508). This gap could be filled by using three seed nodes.

The values for the sensitivity, the positive predictive value and the accuracy of the
inferred pathway are given below:
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Sensitivity 0.92
Positive predictive value 0.86
Accuracy 0.89

To compare the accuracy of pathway inference given three seeds to the accuracy given
two seeds, the inference was repeated with two seeds. Surprisingly, the PathwayBuilder
was able to infer the same pathway given two seeds only. Thus, the third seed node
did not improve the inferred pathway and the higher accuracy in comparison to Didier
Croes’ result might be due to differences in the data set used.

3.2.3 Purine Biosynthesis in E.coli

The long purine biosynthesis pathway (containing 14 reactions) has been chosen as a
more difficult study case. It demonstrates some of the problems pathway inference with
multiple seeds is facing.

The purine biosynthesis pathway as annotated in BioCyc is shown in Figure 3.5. For
this study case, the modified pathway given in the supplementary material of Didier
Croes was taken as reference pathway (Figure 3.6). Didier Croes needed to linearize
the branched pathway to be able to evaluate his two-end pathway inference tool. This
linearization is not of relevance for the PathwayBuilder, since it accepts more than two
seeds as input. However, this linearized pathway was chosen because Didier Croes
demonstrated in his supplementary material that two-end pathway inference fails to
reconstruct the whole pathway.

The following genes involved in purine biosynthesis are regulated by the repressor
purR (information taken from BioCyc): guaA, guaB, purB, purC, purD, purE, purF,
purH, purK, purL, purM and purN.
All or a subset of those genes might appear (negatively) co-expressed in a microarray
experiment that measures the effect of adding purines to the medium on gene expression
in E. coli. This is why input EC number groups for the pathway inferences described
below were chosen from this gene set.

Purine Biosynthesis - pathway inference given 2 seeds
First, the two EC number groups containing the reactions annotated as start and end
node were selected as input (associated reaction ids are given in brackets):
2.4.2.14 (R01072) and 4.3.2.2 (R01083, R04559)

Figure 3.7 shows the guide graph and Figure 3.8 the result graph of the pathway in-
ference given these two EC number groups. The guide graph displays the paths from
first to fifth rank, of which the first paths of first rank are highlighted in black. The small
number of reactions in the result graph (six as compared to 14 in the annotated path-
way) already shows that the pathway inference failed to recover the complete annotated
pathway.
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3.2 Study Cases

Figure 3.5: This figure shows the purine biosynthesis pathway in E. coli as annotated in BioCyc
(Image taken from BioCyc).
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Figure 3.6: This figure shows the purine biosynthesis pathway in E. coli as annotated in the
aMAZE database and linearized by Didier Croes. The figure has been taken from the supple-
mentary materials of [CROES ET AL. 05].
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[R01229]

N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5''-phospho-D-ribosyl)-4-imidazolecarboxamide

N6-(1,2-Dicarboxyethyl)-AMP

[R01134]

[R04035]

[R01128]

[R01071]

[R04378]

[R01127]

IMP

[R04655]

[R04037]

[R04560]

[R04558]

Phosphoribosyl-ATP

[R01072]

5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide

5-Phospho-alpha-D-ribose 1-diphosphate

D-Ribose 5-phosphate

GMP

L-Glutamine

[R04640]

[R01083]

[R01135]

Phosphoribosyl-AMP

1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

[R01049]

Figure 3.7: The guide graph is shown, which contains all paths up to the fifth rank. The
paths with k equals 1 are colored in black, the others in gray. Seed nodes have a blue border,
compounds are colored in blue and reactions in green. The labels give the compound names and
the reaction KEGG ids.
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[R01083]

1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide

[R01135]

[R01127]

N6-(1,2-Dicarboxyethyl)-AMP

5-Phospho-alpha-D-ribose 1-diphosphate

[R04560]

[R04378]

[R01072]

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

IMP

Figure 3.8: This figure shows the result graph that was retrieved from the guide graph by only
keeping paths of first rank. Seed nodes have a blue border, compounds are colored in blue and
reactions in green. The labels give the compound names and the reaction KEGG ids.
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inferred
pathway

annotated
pathway

R01072 R01072
C03090
R04144
C03838
R04325
C04376
R04463
C04640
R04208
C03373
R04209
C04751
R04591
C04823
R04559

C04677 C04677
R04560 R04560
C04734 C04734
R01127 R01127
C00130 C00130

R01130
C00655
R01231
C00144

R01135 R01135
C03794 C03794
R01083 R01083
C00119
R04378

Table 3.2: This table compares the inferred purine biosynthesis pathway given two seed nodes to
the annotated pathway. False positives are colored in red, true positives in green, false negatives
in orange and seed nodes in blue.

Table 3.2 gives a comparison of the inferred versus the annotated pathway, highlight-
ing false positives, false negatives and true positives by different colors. It illustrates
that the inferred pathway is indeed far from reproducing the annotated pathway. This
is also reflected by the sensitivity, the positive predictive value and the accuracy of the
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inferred pathway given below (values rounded):

Sensitivity 0.33
Positive predictive value 0.82
Accuracy 0.58

Interestingly, the PPV is quite high (0.82), indicating that most of the reactions and
compounds in the annotated pathway are true positives. In contrast, the sensitivity is
low, because two large parts of the annotated pathway are missing in the inferred path-
way. One reason is the presence of two reactions associated to the same EC number in
the annotated pathway. Both, R04559 and R01083, belong to EC number group 4.3.2.2.
The PathwayBuilder, in its current implementation, allows only one reaction per EC
number to contribute to the inferred pathway. Thus, a pathway containing two reac-
tions associated to the same EC number group cannot be inferred correctly. However,
additional seed nodes might help to reduce the size of the gaps.

Purine Biosynthesis - pathway inference given 3 seeds
Pathway inference was repeated with 3 EC number groups as input, given in the table
below together with their associated genes and reactions:

gene EC number reactions
purB 4.3.2.2 R01083, R04559
purF 2.4.2.14 R01072
purM 6.3.3.1 R04208

The additional EC number (6.3.3.1) is associated to a reaction, which is located in a
part of the annotated pathway that could not be inferred with two seeds only.

In the guide graph (3.9) two reaction nodes appear twice (R04325 and R04326). This
occurs if both directions of the reaction take part in different paths and underlines the
fact that directions of reactions cannot be inferred. It is of note that in the result graph
(3.10) only three reaction nodes are marked as seed nodes. This illustrates that each EC
number group can contribute only one of its reactions to the inferred pathway. In the
case of EC number group 4.3.2.2, reaction R04559 rather than R01083 has been chosen
by the pathway inference algorithm. This is also the reason why the lower part of the
annotated pathway was missed (see Table 3.3).

The additional seed node increased the accuracy of pathway inference as the list
below shows:

Sensitivity 0.44
Positive Predictive Value 0.86
Accuracy 0.65
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[R04326]

[R04378]

Tetrahydrofolate

[R04326]

[R04208]

[R00944]

5'-Phosphoribosyl-N-formylglycinamide

10-Formyltetrahydrofolate

[R04463]

[R03940]

[R04325]

[R00943]

[R04144]

5-Phosphoribosylamine

[R04558]

[R01072]

5-Phospho-alpha-D-ribose 1-diphosphate

[R00941]

[R04325]

[R04560]

2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine

L-Glutamine

[R04559]

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

5'-Phosphoribosylglycinamide

Figure 3.9: The guide graph for the pathway inference given 3 seeds is shown. Seed nodes
have a blue border, compounds are colored in blue and reactions in green. The labels give the
compound names and the reaction KEGG ids.
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5'-Phosphoribosylglycinamide

5-Phospho-alpha-D-ribose 1-diphosphate

[R04463]

[R04325]

[R04378]

[R01072]

[R04208]

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

5'-Phosphoribosyl-N-formylglycinamide

[R04144]

[R04559]

5-Phosphoribosylamine

2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine

Figure 3.10: This figure shows the result graph of the pathway inference given 3 seeds. Seed
nodes have a blue border, compounds are colored in blue and reactions in green. The labels give
the compound names and the reaction KEGG ids.
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inferred
pathway

annotated
pathway

R01072 R01072
C03090 C03090
R04144 R04144
C03838 C03838
R04325 R04325
C04376 C04376
R04463 R04463
C04640 C04640
R04208 R04208

C03373
R04209
C04751
R04591
C04823

R04559 R04559
C04677 C04677

R04560
C04734
R01127
C00130
R01130
C00655
R01231
C00144
R01135
C03794
R01083

C00119
R04378

Table 3.3: This table compares the inferred purine biosynthesis pathway given three seed nodes
to the annotated pathway. False positives are colored in red, true positives in green, false nega-
tives in orange and seed nodes in blue.

Purine Biosynthesis - pathway inference given 7 seeds

In the last test, the seven following EC number groups have been given as input to the
pathway inference:

55



3 Results

[R03940]

D-Ribose 5-phosphate

[R04655]

5-Phospho-alpha-D-ribose 1-diphosphate

[R04655]

Xanthosine

[R01130]

[R04560]

IMP

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide

[R02295]

1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide

[R04208]

GMP

[R04378]

L-Glutamine

[R01127]

2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine

[R03348]

10-Formyltetrahydrofolate

D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate

[R03346]

[R01072]

N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5''-phospho-D-ribosyl)-4-imidazolecarboxamide

[R04463]

5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide

[R04640]

[R02719]

[R01127]

[R04559]

[R04325]

[R01132]

[R00943]

[R01724]

[R04463]

[R00941]

[R01229]

[R04035]

[R01128]

[R04037]

[R04554]

[R02145]

[R04325]

alpha-D-Ribose 1-phosphate

[R02142]

[R03347]

[R04035]

Nicotinate D-ribonucleoside

[R02297]

[R04037]

[R01132]

[R04558]

Phosphoribosyl-AMP

[R00944]

Xanthosine 5'-phosphate

[R00943]

[R04640]

[R04554]

[R01130]

[R01071]

[R01071]

Nicotinate D-ribonucleotide

[R02142]

[R03940]

[R01134]

[R01049]

[R01072]

[R01231]

[R04326]

Tetrahydrofolate

[R01231]

Guanosine

[R01227]

[R04378]

5'-Phosphoribosyl-N-formylglycinamide

[R01053]

Phosphoribosyl-ATP

[R04208]

[R00944]

[R04559]

5-Phosphoribosylamine

[R04560]

[R04144]

[R00941]

[R04144]

[R01228]

[R01229][R01230]

[R04558]

[R04326]

5'-Phosphoribosylglycinamide

Figure 3.11: The guide graph for the pathway inference given 7 seeds is shown. Seed nodes
have a blue border, compounds are colored in blue and reactions in green. The labels give the
compound names and the reaction KEGG ids.

gene EC number reactions
guaA 6.3.5.2 R01231
guaB 1.1.1.205 R01130
purB 4.3.2.2 R01083, R04559
purF 2.4.2.14 R01072
purH 3.5.4.10 R01127
purH 2.1.2.3 R04560
purM 6.3.3.1 R04208

These seven genes form a group that could be found co-expressed in a microarray
experiment. PurH demonstrates that an enzyme-coding gene can be associated to more
than one EC number.

The resulting pathway (Figure 3.12) is more complex than any of the previous in-
ferred pathways. Not only does it contain cycles, but some reaction nodes occur in both
directions. It demonstrates that a more sophisticated approach of comparison with an-
notated pathways is needed, since it is not obvious how close the inferred pathway is to
the annotated pathway.
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Figure 3.12: This figure shows the result graph of the pathway inference given 7 seeds. Seed
nodes have a blue border, compounds are colored in blue and reactions in green. The labels give
the compound names and the reaction KEGG ids.
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inferred
pathway

annotated
pathway

R01072 R01072
C03090 C03090
R04144 R04144
C03838 C03838
R04325 R04325
C04376 C04376
R04463 R04463
C04640 C04640
R04208 R04208

C03373
R04209
C04751
R04591
C04823

R04559 R04559
C04677 C04677
R04560 R04560
C04734 C04734
R01127 R01127
C00130 C00130
R01130 R01130
C00655 C00655
R01231 R01231
C00144 C00144

R01135
C03794
R01083

C00119
R04378
R04558
C00064
R01229
R02142
R01230

Table 3.4: This table compares the inferred purine biosynthesis pathway given seven seed nodes
to the annotated pathway. False positives are colored in red, true positives in green, false nega-
tives in orange and seed nodes in blue.
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The comparison in Table 3.4 illustrates that the inferred pathway is still erroneous,
but reproduces larger parts of the annotated pathway than any of the previously in-
ferred pathways. The false positives R04378 and C00119 present in the previously
inferred pathways occur again. They provide a shortcut from R04559 via 1-(5’-
Phosphoribosyl)-5-amino-4-imidazolecarboxamide to R01072, thus avoiding reactions
R04209 and R04591, which would have connected R04559 with R04208. The other
gap (R01135 to R01083) is due to the problem described above, namely the presence of
two reactions in the annotated pathway belonging to the same EC number group.

The accuracy is the highest achieved so far:

Sensitivity 0.7
Positive predictive value 0.73
Accuracy 0.71

The example of the purine biosynthesis pathway shows that additional seed nodes can
improve the accuracy of the inferred pathway (in this study case from 0.58 given two
seeds to 0.71 given seven seeds). It also demonstrates that decisions taken during the
implementation of the PathwayBuilder prevent in some cases the correct inference of an
annotated pathway.
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In this chapter, some aspects of pathway inference are treated in more detail that demand
discussion (section 4.1 and 4.2) or that show its limits (section 4.3). The chapter ends
with an overview on the next steps planned.

4.1 Advantages and disadvantages of pathway

inference compared to pathway mapping

In contrast to the tools that map a set of co-expressed enzyme-coding genes on
metabolic pathways, the PathwayBuilder attempts to infer the graph that best connects
those enzymes in the metabolic network according to given criteria.

An advantage of this approach over simple mapping is that it overcomes the problem
of the (often artificial) pathway boundaries. Co-expressed enzyme-coding genes do
not necessarily respect these boundaries and might be located in pathways that are
traditionally separated. The PathwayBuilder deals better with these situations than
tools based on pathway maps.

In addition, it can find new combinations of known compounds and reactions that
might result in variants of known pathways or in unknown pathways. These variants
or new pathways might occur in organisms whose metabolism has not been described
completely, or in mutants. Mapping tools cannot deal with variations.

The major disadvantage of pathway inference is that in contrast to mapping it can in-
troduce errors, namely pathways that are biochemical invalid. This is the price, which is
paid for the inference (prediction) of possibly new pathways. However, a large number
of seed nodes might reduce the number of errors to a reasonable amount.
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4.2 Open questions

Biochemical valid pathways

In this final work, the expression biochemical valid has been used to describe a cor-
rectly inferred pathway. But how can biochemical validity of a pathway be defined?
Definitions like the one given by Arita (in a valid metabolic pathway at least one carbon
atom should be transferred from the start compound to the end compound) [ARITA 04]
are not helpful in case of branched pathways or cycles. In general, it could be stated
that biochemical valid pathways are pathways that have been described in textbooks
or databases based on observations. To know whether an unknown, inferred path-
way is biochemical valid means to check whether a set of rules derived from valid
pathways is satisfied by the new pathway. Rule-based pathway inference methods
[MCSHAN ET AL. 03], [HOU ET AL. 04] return only those pathways that fulfill the given
rules. But their set of rules does not need to be complete and might exclude pathways
that occur in nature from their solution set. Pathway inference based on a metabolic
graph implies rules as well. These rules are less restrictive than those imposed in
[MCSHAN ET AL. 03] and [HOU ET AL. 04]. But if they are sufficient to infer known
paths correctly, they might be as well sufficient to predict biochemical valid unknown
paths. To give a detailed overview on definitions and rules introduced to describe bio-
chemical valid pathways is out of scope of this final work. At least, this short discussion
shows the importance of the notion of biochemical validity for pathway inference.

Collection of the metabolic graph

Another open question is whether organism-specific metabolic graphs or a graph in-
cluding all known compounds and reactions should be used. In principle, this is a ques-
tion of specificity versus sensitivity of the PathwayBuilder. Pathways inferred from an
organism-specific metabolic graph are more likely to be correct than pathways inferred
from a generic graph (high specificity). But there might also be more often cases in
which no solution for the given set of enzymes can be found, because the organism-
specific metabolic network might be incomplete (low sensitivity). A good trade-off be-
tween specificity and sensitivity might be achieved by using a metabolic graph collected
from a set of related organisms.

How to derive the inferred pathway from the guide graph

The solution of the pathway inference is the result graph, which represents the inferred
pathway. As has been explained in the chapter methods and materials, the result graph
is obtained from the guide graph by only keeping the paths of best rank. The subset
of paths, which is treated as solution, can be changed. For example, not only the paths
of first rank, but of first and second rank or of second rank only could be regarded as
solution. Didier Croes listed as result of his pathfinding tool the five paths of first to fifth
rank and chose the best path among them as solution. Having additional information in

62



4.3 Limitations and problems

form of more seed nodes allows defining the solution more strictly as all paths of first
rank only. If this definition of a solution is optimal remains to be explored.

4.3 Limitations and problems

This section lists some generic limitations and some limitations due to certain decisions
taken during implementation of the PathwayBuilder. In addition, unsolved problems are
described.

Collection of seeds from microarray data
The set of co-expressed genes obtained from microarraymicroarraymicroarray data only
contains those enzyme-coding genes that are regulated. Many reactions of a pathway
might not be regulated, which leads to the gaps that the pathway inference algorithm
attempts to fill. Some of these gaps might appear at crucial points in the pathway (where
an additional seed node would have helped to prefer the correct over a lighter pathway).
Thus, there might be cases where correct inference is not possible due to lack of seeds.

Directions of reactions
Since the collected metabolic graph contains both directions for each reaction, direct
and reverse direction of the inferred pathway are equivalent solutions. Thus, an inferred
pathway does not give any information about its direction.

Best solution
The pathway inference algorithm described is a heuristic to solve the problem of con-
necting a set of seed nodes in a graph. It does not necessarily find the best connection
possible for the given criteria.

Treatment of EC number groups
In the current implementation of the PathwayBuilder, an EC number group can only
contribute one of its associated reactions to the pathway to be inferred. This prevents
the correct inference of pathways that contain two (or more) reactions associated to
the same EC number. An alternative strategy would be to allow EC number groups to
contribute more than one reaction to the pathway given certain conditions. For example,
from two reactions A and B in EC number group 1, A could be closest to reaction C in
EC number group 2 and B could be closest to reaction D in EC number group 3. In this
case, A and B can both be part of the pathway and the PathwayBuilder would attempt
to connect them. Whether or not this strategy would improve pathway inference needs
to be explored.

Constraints
Constraints of the k shortest path algorithm (like maximal weight or maximal path
length) reduce the solution space but at the same time they exclude solutions that might
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be biochemical valid. This could be improved by using a k shortest path algorithm that
does not require constraints to achieve reasonable running times on graphs of the given
size (for example Eppstein).

Speed of computation
The disadvantage of the current pathway inference algorithm is its repetitive call to an
exponential algorithm, the backtracking. If backtracking could be replaced through a
quicker k shortest path algorithm, this would speed up computation. Distributed com-
puting using a cluster of computers could increase the speed as well. The computation
of the k shortest paths between a seed node pair can be done in parallel for all possible
pairs of seed nodes on different machines.

4.4 Outlook

Future improvements of the PathwayBuilder
The development of the PathwayBuilder is not yet finished. A module is needed that
links input genes to reactions and another module that allows collection of metabolic
networks from different databases. In addition, filtering of the metabolic graph should
be possible to exclude certain reactions or compounds or to obtain a metabolic graph
consisting of a set of organism-specific metabolic graphs. Cluster computing is under
way but not yet finished, and a number of other improvements still needs to be done.

Parameter optimization
As has been described in the methods chapter, the PathwayBuilder depends on a number
of parameters. For the parameters of the k shortest path algorithm, values have been
recommended by Didier Croes. Other parameters as the distance measure, the node
weights (i.e. zero weight for the seeds, additional weight for all other nodes) or the set
of organism-specific metabolic graphs need to be optimized.

Validation
The next step will be the validation of the PathwayBuilder. The validation will quantify
how close inferred pathways are to (annotated) reference pathways. The two databases
presented in the introduction, KEGG and BioCyc will serve as source for the metabolic
graphs and annotated pathways. It will be of interest to quantify how much (if at all) on
average additional seed nodes improve the accuracy of the pathway inference. For the
individual pathways, improvement of accuracy will depend on the position of additional
seed nodes.

To take the validation one step further would be to apply the PathwayBuilder to
microarray data. To evaluate its ability to infer metabolic pathways from sets of co-
expressed genes, positive and negative controls are required. The pathways known to
be up or down regulated under a given condition should be recovered from the positive
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control, whereas no biochemical valid pathway should be obtained from the negative
control. Suitable data sets to achieve this remain to be identified.
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